Торпеда «Физик»: скрытная и смертоносная

Торпеда «Физик»: скрытная и смертоносная

В массовом сознании подводные лодки воспринимаются прежде всего как носители ракетного оружия. Ну, а что же торпеды? Не остались ли они в прошлом? А если остались, тогда зачем на российский флот пошли серийные поставки торпед нового поколения «Физик»? Давайте разберемся в этом, исходя из самых общих соображений, диктуемых элементарной физикой.

Оружием, сделавшим подводную лодку полноценным боевым кораблем, была торпеда. Именно торпеды позволили крошечной пятисоттонной субмарине U-9 с архаичными керосиновыми моторами (эдакими керогазами, только газифицированное топливо шло не в горелки, а в газовый двигатель Отто) отправить 22 сентября 1914 года на дно сразу три британских броненосных крейсера водоизмещением в 36 000 тонн — HMS Aboukir, Cressy, Hogue. Потери Королевского флота — 1459 человек — почти сравнялись с потерями у Трафальгара.

Цена плотной среды

И подводная лодка, и торпеды работают в среде с плотностью в тысячу раз выше, чем воздух, — в воде. Именно вода сделала крохотный подводный кораблик невидимым, что и позволило подойти на дистанцию выстрела, не опасаясь огня многочисленных пушек британских бронированных гигантов.

А еще именно вода с ее высокой плотностью обеспечила впечатляющую поражающую способность, которую 123-килограммовые боеголовки 45-сантиметровых торпед продемонстрировали на весьма прочных корпусах британских крейсеров. Взрыв в воде гораздо разрушительней взрыва в воздухе. Да и подводная пробоина, в которую вливается вода, много страшнее надводных, овеваемых воздухом разрушений.

Но за все — в том числе и за скрытность, обеспечиваемую плотностью среды, — необходимо платить. Прежде всего затратами энергии, расходуемой на преодоление сопротивления воды. Это обуславливало крайне низкую, по сравнению со снарядами артиллерийских орудий, скорость торпед. У тех C45/06, которыми была вооружена U-9, ход был 26 узлов при дальности стрельбы 3000 м и 34,5 узла при дальности стрельбы 1500 м. Кроме того, в плотной среде любой отклоняющий момент — асимметрия корпуса, тяги винта, удар волны — окажет несопоставимо более сильное воздействие, чем в воздухе.

Так что с самого начала торпедное оружие было оружием если не управляемым, то стабилизированным. Гироскопический прибор Обри с помощью рулевых машинок и горизонтальных рулей не позволял торпеде сойти с курса. Замеряющие давление воды гидростаты, управляя вертикальными рулями, удерживали торпеду на заданной глубине, не давая ей нырнуть вглубь, пройдя под днищем цели, или выскочить на поверхность. Аналогичные возможности — стабилизацию на траектории — реактивные снаряды комплекса «Смерч» получили лишь в 1970-е, когда потребовалось поднять дальность стрельбы РСЗО с приемлемым рассеянием до 70 км. Такая вот разность в свойствах воды и воздуха.

На километр вглубь

Большую часть своей истории подводные лодки были вооружены торпедами и именно с их помощью вели боевые действия. Но потом на подводный флот пришли ракеты. Они позволяли сочетать скрытность субмарин с высокой скоростью и дальностью, которая обеспечивалась идущим в воздушной среде снарядом. Стратегическим — таким как ракеты UGM-27 Polaris, стартующие из вертикальных шахт. Тактическим — предназначенным для борьбы с советскими подводными лодками: субмарины НАТО были оснащены запускаемыми из торпедных труб ракетоторпедами UUM-44 SUBROC. Твердотопливный ракетный двигатель поднимал SUBROC из воды и под управлением инерциальной системы управления вел в воздухе к цели на дальности до 55 км — цель поражалась пятикилотонной ядерной боеголовкой W55.

К семидесятым годам прошлого века торпеда ушла на второй план. Она осталась «нишевым» оружием, предназначенным для борьбы с подводными лодками. И именно для этой цели была создана предыдущая отечественная торпеда — УСЭТ-80, универсальная самонаводящаяся электрическая торпеда, принятая на вооружение в 1980 году. Почему эта торпеда была электрической?

Дело в том, что в семидесятые годы предполагалось, что рабочая глубина перспективных подводных лодок США достигнет 1000 м. Именно под километровой толщей вод и должна была поражать их советская торпеда. Но километр глубины — это давление в сотню атмосфер. А любой тепловой двигатель предназначен для работы в окружающей среде с низким давлением.

Так что создателям УСЭТ-80 пришлось прибегнуть к электрическому двигателю, питаемому серебряно-магниевой батареей, которая активируется морской водой. Это обеспечивало работу на километровой глубине, позволяло торпеде развивать скорость 45 узлов, а при 43 узлах достигать дальности 18 км. В плотной среде, где не работают оптика и радары, при тогдашнем уровне развития гидроакустических средств этого было вполне достаточно.

Вдогонку за субмариной

Но в реальности развитие техники западных ВМС шло не так, как виделось в 1970-е. Многоцелевые подводные лодки класса Seawolf, вступавшие в строй с 1997 года, имеют рабочую глубину 480 м и предельную 600 м. У более дешевых и массовых лодок класса Virginia, поступающих на службу с 2004 года, предельная глубина ограничена 488 м. У германских субмарин класса U-212 предельная глубина — 350 м, а у их экспортной версии U-214, стоящей на вооружении ВМС Турции, — 400 м. Так что ни о какой работе торпед на километровой глубине сегодня и речи нет.


В настоящее время НИИ мортеплотехники (Санкт-Петербург) разработал УГСТ «Футляр», которая является усовершенствованной версией торпеды «Физик» и обладает сходными параметрами. Производятся УГСТ на ОАО «Завод «Дагдизель»» (Каспийск, Дагестан).

А вот ходят современные подводные лодки уважаемых партнеров быстро: Seawolf развивает скорость до 35 узлов. И, как легко понять, стрельба торпедой с ограниченным до 18 км запасом хода представляет собой трудную задачу, даже если принять во внимание возможности самонаведения торпеды УСЭТ-80, которая способна гнаться за вражеской субмариной по кильватерному следу или выходить на цель с помощью активно-пассивного гидролокатора.

Но какой бы изощренной ни была система управления, фундаментальные ограничения скорости и запаса хода накладывают свои ограничения на применение торпед по скоростным маневрирующим целям. Например, окажись наша субмарина строго за кормой идущего полным ходом «Сивульфа», стрелять торпедой УСЭТ-80 вдогонку с дистанции 3−4 км не имело бы смысла: не хватит запаса хода торпеды, чтобы сократить расстояние до нуля. За час на ходу в 43 узла она сможет сблизиться с субмариной только на 14,8 км. Но аккумуляторов хватит менее чем на четверть часа…

УГСТ «Физик» принята на вооружение в 2015 году и устанавливается на подводные лодки проектов 885 («Ясень») и 955 («Борей»). На фото: АПЛ «Александр Невский» — второй корабль, построенный в рамках проекта 955.

Если бы торпеда имела бесконечную скорость или бесконечный запас хода — тогда бы она, установив контакт с целью, гарантированно поразила бы ее в радиусе действия или при скорости, хоть чуть-чуть уступающей скорости торпеды. Но в реальности так не бывает, и поэтому важнейшей задачей стало повышение скорости и запаса хода новой отечественной торпеды УГСТ. А поскольку стало понятно, что нырять на километр торпедам не придется, то обратились к проверенному вековой практикой химическому топливу, более энергоемкому при той же массе.

Топливо XXI века

Двигательная установка торпеды «Физик» использует однокомпонентное топливо — примерно так же, как современные твердотопливные ракеты. Только в торпеде оно не твердое, а жидкое. Какое именно? Ну, наверное, мы не сильно ошибемся, предположив, что оно в общих чертах аналогично монотопливу Otto Fuel II, применяемому в торпедах стран НАТО.

Это топливо не имеет никакого отношения к газовому двигателю Отто — оно названо по имени изобретателя Отто Рейтлингера и состоит из пропиленгликоля динитрата (он же 1,2-пропандиол динитрат), стабилизированного 2-нитродифениламином и десенсибилизированного (потерявшего чувствительность к детонации) дибутилсебакатом. Это красновато-оранжевая маслянистая жидкость с резким запахом. Нелетучая, невзрывоопасная, хоть и достаточно ядовитая. И энергии в ней содержится куда больше, чем в любой аккумуляторной батарее.

УГСТ «Физик» имеет как режим самонаведения по кильватерному следу, так и режим телеуправления, когда за целью следит гидроакустическая система подводной лодки, а команды торпеде передаются по оптоволоконному кабелю.

Ну а для того, чтобы эту энергию извлечь, однокомпонентное топливо разогревается стартовым пороховым зарядом. Получившиеся газы идут в цилиндры аксиально-поршневого двигателя, где и происходит их сгорание. Аксиально-поршневой — это двигатель, где цилиндры расположены по кругу параллельно, осями друг к другу, а вместо коленвала используется наклонная шайба. Когда-то он был изобретен для авиации, но сейчас прижился в торпедах.

Аксиальный двигатель нагружен малошумным водометным двигателем. Так что универсальная глубоководная самонаводящаяся торпеда «Физик» имеет скорость 50 узлов при дальности 50 км, что существенно расширяет тактику ее применения по сравнению с УСЭТ-80. Как уверяют флотские, пуск «Физика» из современных торпедных аппаратов практически бесшумен, что исключает демаскировку атакующей лодки. На цель торпеду может направлять как система самонаведения, так и проводная система телеуправления, когда за целью следит гидроакустическая система подводной лодки, а команды торпеде передаются по оптоволоконному кабелю.

УГСТ «Физик»

Калибр, см 53,4
Длина, м 7,2
Масса ВВ, кг не более 2200
Дальность, км до 50
Скорость, узлов I режим — 50
II режим — 35
Глубина, м хода — до 500
стрельбы с ПЛ — до 400
Радиус реагирования ССР, км по ПЛ — до 2,5
по НК — до 1,2
Время индикации кильватерного следа, с до 350

Поскольку на лодке и размеры датчиков гидроакустической станции больше, и процессоры, обрабатывающие их данные, мощнее, такая схема применения дает лучшие, чем при самонаведении, шансы в дуэли с подводной лодкой противника. Этому помогает и более высокая маневренность «Физика»: его рули после пуска выходят за контур торпеды (примерно так же, как раскрываются стабилизаторы ПТУР 9М111 «Фагот»), что обеспечивает большую эффективность управления в широком диапазоне скоростей. А это нужно потому, что при телеуправлении — когда торпеда тащит за собой кабель или катушку с проводом — приходится уменьшать скорость торпеды, платя увеличением времени хода за скрытность.

Так что торпедное оружие становится более адекватным тем задачам, которые ставит XXI век. Оно может быть выпущено с больших, чем ракеты, глубин — до 400 м. Оно имеет более низкий уровень демаскирующих факторов, прежде всего шума: торпеда деликатно выходит в жидкую среду, а ракета врывается туда с ударом горячих газов из двигателя, почти взрывом. Но конкретная тактика применения этого оружия — военная тайна, куда более серьезная, чем сведения о самом этом оружии…

Статья ««Физик»: скрытный и смертоносный» опубликована в журнале «Популярная механика» (№7, Июль 2017).
Комментарии

Авторизуйтесь или зарегистрируйтесь,
чтобы оставлять комментарии.