Уже в этом месяце стартуют европейские продажи гибридного спорткара BMW i8, который в качестве опции оснащается лазерными фарами. Компания Audi начала принимать заказы на 570-сильный R8 RMX, для которого такая оптика — стандартное оборудование. Тот факт, что «гиперболоиды» освещают путь хотя и редких, но уже серийных машин, мы сочли достойным поводом для освещения последних новинок оптической моды.

Лазеры стали неотъемлемой частью нашей повседневной жизни еще в конце 1980-х с изобретением компакт-дисков и оптических приводов. С тех пор мы знаем, что лазеры могут быть очень полезны. Знаем мы также и то, что их излучение не всегда видимо глазу, но способно нанести серьезную травму при прямом попадании. А также то, что лазеры используются в хирургии в качестве скальпеля, а на промышленных производствах запросто режут металл. Все это как-то не вяжется с приятным глазу светом, разверзающим тьму на ночном шоссе.

Секрет в том, что в лазерных фарах собственно лазер служит вовсе не источником света, а поставщиком энергии. Принцип действия любого источника света состоит в том, что атомы излучающего вещества поглощают энергию и испускают фотоны. К примеру, в лампе накаливания вольфрамовая нить нагревается за счет электрической энергии.
Фото
Конструкция реальной фары, устанавливаемой на BMW i8, несколько отличается от прототипа, однако принцип действия остается неизменным. Три лазерных светодиода поставляют энергию на фосфоросодержащее вещество, а компактный рефлектор формирует из света точечного источника пучок нужной формы.

В лазерной фаре BMW i8 три лазерных светодиода создают когерентное (однонаправленное) излучение в голубой области спектра. Мощность этого излучения в десять раз превышает мощность ксеноновой фары. С помощью системы зеркал несколько лазерных лучей фокусируются на линзе, покрытой фосфоросодержащим флуоресцентным составом. Именно этот состав, поглощая энергию лазеров, излучает приятный глазу белый видимый свет.

Яркость такой фары, пусть и не десятикратно, но все же весьма значительно превышает яркость ксеноновых или светодиодных фар. Дальность действия лазерной фары достигает 600 м, в то время как предел возможностей LED-фары — всего 300 м.

Мал золотник, да ярок

Лазерная технология предлагает ряд веских конструктивных преимуществ. К примеру, размер рефлектора — вогнутого зеркального отражателя, формирующего световой пучок нужной формы, — напрямую зависит от размеров источника света. Для галогеновой фары необходим как минимум 120-миллиметровый рефлектор, для ксеноновой достаточно 70-миллиметрового. Этим отчасти объясняется тот факт, что для многих автомобилей премиум-класса доступны лишь ксеноновые или светодиодные фары: их дизайн не допускает применения крупной галогеновой оптики.

Флуоресцентная субстанция в лазерной фаре — это практически точечный источник света, для которого достаточно 30-миллиметрового рефлектора. А значит, лазерная оптика может быть очень компактной, что непременно оценят дизайнеры.

Пожалуй, самый существенный недостаток светодиодов — это склонность к перегреву. Значительная часть потребляемой ими энергии расходуется на выделение бесполезного тепла, которое необходимо рассеивать с помощью массивных радиаторов и дорогостоящих вентиляторов. Мало того, интенсивность свечения и долговечность светодиода зависят от рабочей температуры, поэтому сложные интеллектуальные системы охлаждения становятся неотъемлемой частью LED-фар.

Лазерный диод — очень эффективный источник энергии. Он не склонен к перегреву, и для его охлаждения достаточно компактного пассивного радиатора. Это значит, что лазерная оптика экономит драгоценное подкапотное пространство, несколько килограммов веса и весьма значительное количество топлива.

К сожалению, мы вряд ли скоро увидим лазерные фары на автомобилях массового сегмента. И помимо имиджевых соображений для этого есть весьма веские объективные причины. Яркость, а значит, и ослепляющая способность «лазерного» света как минимум вдвое больше, чем у любых современных аналогов. Следовательно, фары такого типа могут применяться только совместно с технологиями «неослепляющего» дальнего света и контроля уровня, которые сами по себе весьма дороги. В глаза встречным водителям ни в коем случае не должен попасть ближний свет авто, показавшегося из-за перегиба дороги, или включенный по ошибке «дальний».

На случай аварии предусмотрена система, отключающая лазеры при разрушении фары: все-таки прямое попадание лазерного луча может представлять опасность.

Прицельный огонь

Согласно статистике, многие водители пользуются дальним светом в исключительно редких случаях, а некоторые не пользуются совсем. Это связано с нежеланием отслеживать появление на дороге встречных автомобилей и постоянно переключаться на «ближний». Между тем на скорости 100 км/ч ближний свет обеспечивает видимость в пределах 70−80 м, в то время как остановочный путь может превышать эту величину.

«Неослепляющий» дальний свет уже прочно обосновался в списках опций люксовых автомобилей. Напомним, что водители машин, оборудованных данной системой, могут не выключать дальний свет даже при появлении встречных авто. Специальный механизм внутри фары меняет свет с дальнего на ближний лишь в узком секторе, в который попадает встречный автомобиль. Остальная часть дороги, включая попутные и встречные полосы, а также обочины, остается освещена «дальним».

Чтобы реализовать эту полезную функцию, производители используют два противоположных подхода. Первый заключается в наличии масок, затеняющих ту или иную часть светового пучка. Маски приводятся в движение быстрыми сервомоторами с точностью позиционирования до 0,1°. Моторы управляются компьютером, который анализирует изображение с высокочувствительной видеокамеры. К таким системам относится, к примеру, BMW Selective Beam.

Второй подход предполагает использование отдельных источников света (ксеноновых ламп или светодиодов) для освещения каждого сектора дороги. Противники данной концепции упрекают ее в ощутимом падении общей яркости при отключении отдельных сегментов или в избыточной ширине теневой зоны.

Вряд ли в этом можно упрекнуть фары Audi Matrix LED, опционально устанавливаемые на последнее поколение седана A8. За дальний свет в них отвечают 25 мощных светодиодов, скомпонованных в пяти рефлекторах. Это означает, что пучок дальнего света делится аж на 25 узких секторов, и, управляя ими, можно точно затенять очень узкие участки.

Важное преимущество Matrix LED заключается в способности затенять сразу несколько встречных автомобилей, сохраняя полосы дальнего света между ними. Такая возможность недоступна для фар с моторизированными масками.

Если переключатель света на A8 установлен в положение auto, дальний свет автоматически включается на скорости свыше 30 км/ч за городом и свыше 60 км/ч в населенных пунктах. Для того чтобы отличить проселочные дороги от городских, система обращается за подсказкой к спутниковому навигатору.

Одна из последних модных функций, доступная для обоих типов неослепляющих фар, — подсветка людей и животных при движении с ближним светом. Это стало возможно благодаря появлению на автомобилях представительского класса приборов ночного видения. Если такой прибор обнаруживает человека или животное на дороге или обочине, он посылает в соответствующем направлении узкий мигающий луч дальнего света. Этот «маяк» не только указывает водителю на опасность, но и предупреждает пешехода или зверя о приближении транспорта.

На периферии

Инновации затрагивают не только фары головного света, но и вспомогательные световые приборы — габаритные огни, стоп-сигналы, указатели поворотов. К примеру, «поворотники» на той же Audi A8 представляют собой линии из 18 светодиодов спереди и 24 сзади. Они загораются не одновременно, а друг за другом, имитируя движение светящейся линии в сторону поворота.

Любопытно, что «мультипликационные» указатели поворотов вполне вписываются в обычные правила: ведь, загоревшись по очереди с 20-миллисекундным интервалом, огни остаются зажженными в течение еще 250 миллисекунд, а затем гаснут, как и предписано стандартом.

На автомобилях будущих поколений место габаритных огней, а также внутрисалонных осветительных приборов займут органические светодиоды OLED. В отличие от обычных светодиодов, представляющих собой точечный источник света, OLED — это тонкая пленка, излучающая свечение по всей площади. На единицу площади OLED приходится гораздо меньшая тепловая нагрузка и яркость, что, в свою очередь, означает экономию и пространства, и электроэнергии, и в конечном счете — топлива.

Статья «Поморгать гиперболоидом» опубликована в журнале «Популярная механика» (№7, Июль 2014).