Страна восходящего солнца и в космосе демонстрирует свои традиционные ценности — умеренность и аккуратность

Так художник представляет себе аппарат «Фазы-2» сразу после отстрела от аэростата
Комбинированная схема аппаратов «Фазы-1» и «Фазы-2»
Запуск первого образца семейства H-IIA

Поражение во Второй мировой войне стало сущим подарком для Японии, как бы дико это ни звучало. Идеи национального превосходства ушли в прошлое вместе с милитаристским угаром, и нация смогла сосредоточиться на действительно важных вопросах — прежде всего, на эффективности. Так и появилось знаменитое японское чудо, о котором слышали все. Но вряд ли многие знают, что нечто подобное происходило и в области космических разработок. Японцы выстраивали свою космическую программу не славы ради, но исключительно для достижения утилитарных, пусть и масштабных целей.

Три сестры

Японский космический бюджет (по данным euroconsultec. com) составляет не более 12% от бюджета NASA. Тем не менее на эти деньги уже несколько десятилетий живут и процветают не одно, не два, а целых три независимых гражданских космических подразделения: космическое агентство NASDA (National Space Development Agency), институт астронавтики ISAS (Institute of Space and Astronautical Science) и научная лаборатория NAL (National Aerospace Laboratory). Причем единое руководство отсутствует и у каждого из трех подразделений есть собственные исследовательские центры и пусковые установки.

Среди специалистов распространено мнение, что именно благодаря конкуренции Япония в столь сжатые сроки и при довольно ограниченном финансировании достигла больших успехов. В последние годы, на фоне ухудшающегося экономического положения, появились разговоры о слиянии трех подразделений или хотя бы о едином руководстве ими, но «сестер» по‑прежнему три и их суммарный бюджет по‑прежнему находится в районе $2 млрд.

NASDA

Японское агентство космических разработок (NASDA) было образовано в 1969 году (см. врезку «Основные вехи истории NASDA»). С самого начала ставка была сделана на максимально эффективное использование средств. Технологией помогли американцы. В довольно короткие сроки Япония освоила технологию космических полетов и научилась выводить грузы на орбиту уже самостоятельно. Здесь важно заметить, что для Японии космос — не роскошь и не предмет национального престижа. И даже не военный объект. Жизнь всего населения страны зависит от погоды и стихий. Поэтому для Японии исследования в области метеорологии — вопрос буквально жизни и смерти. На этом в основном и сконцентрированы усилия ученых и инженеров.

Космический самолет «Надежда»

Все знают, что запускать ракеты очень-очень дорого. Просто неприлично

дорого. Поэтому во всем мире и фантасты и ученые придумывают самые разнообразные способы вывода грузов на орбиту. Японцы остановились на беспилотном космическом самолете. Назвав его HOPE-X («Надежда» — в переводе с английского), или H-II Orbiting Plane Experimental, они начали активно развивать технологии, составляющие этот грандиозный проект. На примере его реализации хорошо видно, насколько рачительно использовались средства налогоплательщиков и насколько продуманным был каждый этап.

«Летающая тарелка»

Первым шагом на пути создания HOPE-X стал эксперимент по возвращению с орбиты OREX (Orbital Re-Entry eXperiment), состоявшийся в 1994 году. Суть эксперимента заключалась в отправке небольшого объекта на орбиту и возвращении его после одного витка. Больше всего он был похож на «летающую тарелку», только очень маленькую (диаметр — 3,4 м, радиус носовой части — 1,35 м, высота — 1,46 м, вес — около 865 кг при запуске и около 761 кг к моменту возвращения). Сначала ракета H-II вывела OREX на орбиту высотой 450 км. Примерно через 100 минут после запуска устройство проходило над островом Танегасима. В этот момент согласно плану сработали тормозные двигатели и начался процесс схода с орбиты. За всем этим наблюдали наземные станции островов Танегасима и Огасавара. Покинув орбиту, OREX вошел в верхние слои атмосферы где-то в центре Тихого океана. Произошло это через 2 часа после запуска. Во время снижения носовая часть нагрелась до 15700C, что привело к потере связи с устройством, потому что плазма, образовавшаяся вокруг аппарата, отражала радиоволны. В эти моменты состояние OREX фиксировалось сенсорами и записывалось в бортовой компьютер. В момент восстановления связи устройство передало данные на станции телеметрии, расположенные на самолетах и судах. Затем OREX упал в океан примерно в 460 км от острова Рождества. Весь полет занял примерно два часа и десять минут. Все поставленные цели были достигнуты: в частности, собраны данные по аэродинамике и тепловым режимам в момент возвращения с орбиты, данные о поведении материалов обшивки, проведен анализ состояния аппарата в момент потери связи с Землей и получена навигационная информация, собранная при помощи системы глобального позиционирования GPS. Самый ценный результат — данные о поведении сверхпрочных материалов обшивки, которые планируется использовать в проекте космического самолета HOPE-X. В OREX принимала участие японская Национальная аэрокосмическая лаборатория (NAL).

До пятнадцати скоростей звука

В феврале 1996 года ракета-носитель J-I вывела на орбиту следующий аппарат — HYFLEX (Hypersonic FLight EXperiment). Целями проекта было научиться строить гиперзвуковые (то есть обладающие скоростью, в 3 раза выше скорости звука) летательные аппараты и собрать данные об их поведении.

На высоте около 110 км HYFLEX отделился от ракеты-носителя и совершил свободный полет со скоростью 3,9 км/с, временами доходившей до 15 Мах (за 1 Мах принимается скорость звука в атмосфере, или около 1200 км/ч). После прохождения «мертвой зоны» и восстановления радиоконтакта аппарат передал телеметрические данные на самолеты и суда, выбросил парашюты и попытался приводниться. Однако произошла неудача — он утонул, выполнив, тем не менее, всю программу полета. Важным аспектом эксперимента стало исследование навигационной системы и системы контроля высоты. Аппарат весил 1054 кг, площадь его поверхности составляла 4,27 кв. м, длина — 4,4 м, размах крыльев — 1,36 м, высота — 1,04 м.

Аспекты автоматической посадки

Проблема автоматической посадки так и не была решена промышленно. Такие системы существовали (например, военные Ил-76, да и «Буран» садился сам), но их надежность, мягко говоря, оставляла желать лучшего. Отработка системы беспилотной посадки на низких (относительно) скоростях ALFLEX стала следующим шагом на пути создания космического самолета. С июля по август 1996-го было проведено 13 экспериментов в рамках проекта ALFLEX. Аппарат, аналогичный будущему HOPE-X, поднимали при помощи вертолета на очень большую высоту и сбрасывали. Устройство захватывало посадочную линию и совершало автоматическую посадку. Все эксперименты завершились успешно. Длина устройства составляла 6,1 м, размах крыльев — 3,78 м, высота без шасси — 1,35 м, вес был 760 кг.

Как проходил эксперимент

Сначала ALFLEX прикреплялся к вертолету. Затем последний поднимался в воздух и следовал заданным курсом. Когда нос ALFLEX выравнивался с посадочной полосой, вертолет разгонялся до 90 узлов (примерно 166 км/ч) и отпускал устройство в свободный полет. Курс снижения составлял около 300. При отрыве от вертолета скорость аппарата была около 180 км/ч. В момент касания земли ALFLEX выпускал тормозной парашют, а также снижал скорость при помощи шасси. После каждого «забега» исследовались возможные повреждения вертолета и модуля ALFLEX. В результате были получены данные о поведении аппарата, по характеристикам аналогичного самолету HOPE-X в условиях низкоскоростного режима посадки. Опыт разработки системы автономного снижения и посадки был приобретен.

Как это было: «Фаза-1»

Собственно, поводом к написанию этой статьи послужило опубликование результатов эксперимента HSFD Phase-I («Фазы-1»). HSFD (Hish Speed Flight Demonstration) — это очередной шаг на пути строительства космического самолета. Уже создан аппарат с реактивным двигателем, способный разгоняться до 0,6 Мах (около 700 км/ч), который может сам взлетать, следовать заданным маршрутом и садиться в указанном месте.

Как раз такое устройство взлетело осенью 2002 года с острова Рождества. Аппарат разогнался, поднялся на высоту 5 км, затем спустился, спланировал и приземлился на ту же полосу. Он в точности выполнил программу полета, которая, кстати, может быть в любой момент изменена. Устройство «Фазы-1» является уменьшенной копией HOPE-X (составляет 25% от размера будущего самолета). Оно снабжено реактивным двигателем и шасси. Бортовой компьютер при помощи GPS и датчиков определяет параметры полета и управляет движением. Габариты аппарата «Фазы-1» такие: длина — 3,8 м, размах крыльев — 3 м, высота — 1,4 м. Вес — 735 кг. Площадь крыльев — 4,4 кв. м. Мощность двигателя — 4410 Н.

Как это будет: «Фаза-2»

Ничуть не менее интересной будет вторая фаза эксперимента HSFD. Аппарат будет такой же, как в «Фазе-1». Только вместо ракетного двигателя у него будет огромный парашют, а вместо шасси — надувные мешки, вроде подушек безопасности в автомобилях. Сначала устройство подцепят за хвостовую часть к небольшому воздушному шару. Он «донесет» аппарат до огромного аэростата, который в свою очередь вытащит его в стратосферу. Затем на высоте примерно 30 км челнок отстрелится и полетит вниз. Разогнавшись до околозвуковых скоростей, он соберет разнообразные аэродинамические данные, затем выберет направление и при помощи парашютов выйдет на посадку. Поскольку у него нет никаких двигателей, аппарат «Фазы-2» спланирует и использует для посадки только парашют и надувные мешки. Этот эксперимент планируется провести в 2003 году.

Что же дальше

Если «Фаза-2» окончится так же успешно, как и все предыдущие эксперименты, следующим шагом станет TSTO (Two-Stage To Orbit), это будет что-то похожее на «Буран», но принципиально беспилотное, то есть там даже не предусмотрена возможность пилотируемых полетов. А следующим шагом станет уже полноценный космический самолет — устройство, способное взлетать с обычного аэродрома, долетать до орбиты и возвращаться. Когда это будет — совершенно неясно, но нынешние темпы японской программы внушают уверенность в том, что когда-нибудь это обязательно произойдет.

Статья опубликована в журнале «Популярная механика» (№1, Январь 2003).