Мы продолжаем разговор о «ракетных металлах», начатый в апреле 2007 года, и рассказываем о тех материалах, которые приходят на смену нынешним «любимцам конструкторов».

На рубеже XX и XXI веков основу ракетно-космической техники составляли алюминиевые, никелевые и титановые сплавы, композитных же материалов (КМ) было немного. Пройдет еще десятилетие или два, и ситуация коренным изменится — новое поколение алюминиево-литиевых сплавов, композиты и интерметаллиды вытеснят из ракет традиционные сплавы. Впрочем, хорошо знакомые металлы пока не сдаются: они давно освоены техникой, есть оборудование и технологические процессы, которые позволяют получать требуемые детали. Нужно только повысить качество материалов.

Передовые металлургические технологии могут дать уже известным материалам новую жизнь. Наиболее высокую чистоту титановых и никелевых сплавов обеспечивает электронно-лучевая переплавка с промежуточной емкостью, когда металл расплавляется и продувается очень небольшим количеством нерастворимого в металле инертного газа, обычно гелия, который «вытягивает» за собой вредные примеси, под двумя электронно-лучевыми пушками. В результате происходит удаление серы, кремния, фосфора, кислорода, азота, и качество металла заметно растет, даже повышается температура плавления! Это одна из лучших технологий в мире. Во всяком случае, именно под влиянием российских разработок американцы стали активно строить такие печи.

В порошок

Одно из приоритетных российских направлений — гранульная (порошковая) металлургия. В чем ее преимущества перед литьем? По составу никелевые сплавы в обоих случаях одни и те же, но их характеристики совсем другие. Показатели надежности гранульных материалов более чем вдвое превышают литые — благодаря уникальной однородности и улучшению микроструктуры. Ударная вязкость (параметр, используемый материаловедами; «антихрупкость») выше в полтора раза. Известно, например, что двигатели для крупнейшего в мире европейского аэробуса А380 поставила фирма Rolls-Royce; их лопаточные колеса сделаны из гранульных жаропрочных сплавов. Англичане сами такой металлургией не занимались и попросили помощи у американцев. Те отказались передать оборудование и технологию, но «с радостью» стали продавать диски. Интересная история: «ключик» от А380, за взлетом которого наблюдали Шредер и Ширак, на самом деле находится в США.

Таким образом, серьезного гранульного производства сегодня в Европе нет. А в России есть — существует полная линия гранульной металлургии, созданная на ОАО «Композит» совместно со Ступинским металлургическим комбинатом. Освоено и производство капсул, и выплавка электродов самого высокого качества, и распыление, и получение великолепнейших гранул. В турбонасосных агрегатах двигателей РД-171 и РД-180, идущих на экспорт, используются именно такие материалы. Кстати, при сравнительном анализе экспертами ОАО «Композит» российские гранулы оказались лучше американских.

Под давлением

Традиционное литье может составить конкуренцию спеченному порошку, если отливку потом обработать в газостате под давлением до 2000 атмосфер и при температуре до 12000С. При обычном затвердевании в форме металл усаживается, и в наиболее сложных местах деталей — в изменениях сечений и переходов — образуются микропоры. По этим местам и происходит разрушение. Обработка температурой и давлением в газостате позволяет приблизить свойства детали к идеальным. Вот данные 2003 года: в США 850 газостатов, в Европе 720, в Японии — порядка 400. К сожалению, в России лишь 24 газостата, и вот сейчас на ММЗ «Салют» прибавляется еще один, 25-й. А действуют из них всего четыре!

Эффект от обработки в газостате поразительный: усталостная прочность лопаток ГТД повышается наполовину; количество брака уменьшается в пять раз — с 50 до 10%! А стоимость всего одной литой турбинной лопатки — порядка пятисот долларов! Поверхности деталей, работающих на износ, при традиционных технологиях приходится дополнительно упрочнять. Обычно они азотируются, но тогда на поверхности получается плотный и хрупкий слой, который может скалываться. В газостате азотирование качественно иное — глубина слоя, насыщенного азотом, не 10−20 микрон, как раньше, а 1,5−2,5 мм. Поверхность по твердости вполне соизмерима с алмазом, далее идет плавный переход — никаких сколов поверхностного слоя, — а в глубине твердость, характерная для металла.

Из таких материалов в перспективе будут изготавливать турбины и прочие агрегаты двигателей, а вот корпуса и баки — из алюминий-литиевых сплавов второго поколения. Они намного дешевле сплавов первого поколения, лучше штампуются, гораздо лучше свариваются (можно вместо экзотической сварки трением использовать традиционную аргонно-дуговую) и содержат значительно меньше лития (что, кроме снижения стоимости, увеличивает стойкость к микротрещинам). «Композит» освоил малотоннажное производство Al-Li сплавов второго поколения — трубы и полусферы.

Интерметаллы

Последний класс металлических материалов — интерметаллиды (особый тип химических соединений разных металлов, от сплавов отличаются прочными химическими связями) на основе титана и никеля. Если титановые сплавы работают сейчас до температуры 5500С, а 600−6500 — рекордные цифры, то интерметаллиды в перспективе смогут работать до 800−9000С. При этом их удельный вес 4−6 г/см3 — гораздо меньше, чем у традиционных никелевых жаропрочных сплавов. Интерметаллиды обеспечивают повышение коррозионной стойкости, имеют в 20 раз более высокую стабильность размеров и радиационную стойкость, что особо важно для космических аппаратов (КА), в пять раз более высокую удельную прочность. Впрочем, интерметаллиды были известны давно, но их использованию в технике мешала их хрупкость. Лишь сейчас с нею научились бороться различными хитрыми способами, ранее недоступными.

Крылатые композиты

Но все же, несмотря на новые технологии работы с металлами, неметаллические материалы побеждают. Если в конструкциях российской гражданской авиатехники четвертого поколения применяется примерно 70% алюминиевых сплавов и 15−20% композитов, то последний Airbus уже на 50% состоит из композитных материалов, а американцы в Boeing 787 Dreamliner обещают повысить этот показатель до 70%. С ракетами и космическими аппаратами происходит то же самое. Причина — экономия массы выводимого на орбиту груза, и чем выше «номер ступени», тем больше выигрыш от использования композитов. Кстати, первой ракетной крупногабаритной «цельнопластмассовой» деталью почти полвека назад стал стеклопластиковый головной обтекатель на американских лунных зондах. Современный обтекатель ракеты «Протон-М», сложная сотовая пятислойная углепластиковая конструкция со специальным теплозащитным покрытием (ТЗП), весит на четверть меньше традиционного дюралевого. Большинство наружных ТЗП, которые предохраняют полезный груз от аэродинамического нагрева, работают на испарении и «уносе массы». Это полимерные материалы на основе, как правило, силиконовой резины с различными наполнителями — как снижающими массу покрытия, так и замедляющими его выгорание. Реализован принцип «кипящего чайника»: пока вода не выкипела, температура чайника выше 1000С не поднимется. В результате снаружи, например, головного обтекателя температура свыше 9000С, а в приборном отсеке — всего 60!

Пластмассовые ракеты

Твердотопливные ракеты стали «пластиковыми» почти целиком — из композитов уже давно изготавливают корпуса двигателей, причем в космосе стеклопластик появился на третьей ступени первых американских ракет-носителей «Тор-Эйбл» и «Авангард» в конце 50-х. Хотя «Авангард-1» был запущен ракетой с металлической третьей ступенью, последний спутник этой серии полетел уже на стеклопластиковом двигателе. Чтобы получить максимальный выигрыш от замены металла композитом, корпус двигателя делают одной неразъемной конструкцией, которая за очевидное сходство с продукцией гусениц шелкопряда была названа «коконом». Для намотки «кокона» используются специальные крупногабаритные станки, причем прямо в процессе намотки кокон пропитывается смолами, которые полимеризуются в специальных автоклавах. Кроме стеклопластика используются и углепластики, и даже органопластики (кевлар и др.).

Если говорить о жидкостных ракетах, то пока дело ограничивается межбаковыми отсеками — например, на ракете Falcon-1 переходник между ступенями сделан из углепластика. И в Америке, и у нас разработчики пытаются построить из углепластика баки для горючего и для окислителя, но задача пока не решена — из-за этого, например, был закрыт проект одноступенчатого многоразового носителя Х-33. Ключевым местом конструкции должен был стать композитный бак для жидкого водорода, но оказалось, что под воздействием криотемператур композит растрескивался. Тем не менее попытки будут продолжаться, потому что выигрыш может составить не менее 25% массы конструкции, даже с учетом увеличения толщины.

Матрица

В этом направлении больших успехов добилось Обнинское ПО технологии. Расположение слоев ткани при плетении в особых направлениях обеспечивает работоспособность материала при колебаниях температур от -196 до +2700С, причем деталь совершенно не коробится — материал подбирается так, что попеременно работают то одни слои, то другие, то третьи, расширяясь в разные стороны.

В местах с максимальными температурами применяются углерод-углеродные композиционные материалы (УУКМ). Они фактически незаменимы во вкладышах критического сечения сопел твердотопливных двигателей, входных «воротниках», раструбах сопел. Нос «Шаттла» и кромки его крыльев тоже прикрывают УУКМ.

Существует много технологий получения УУКМ. В общем виде материал представляет собой каркас из углеродных волокон, промежутки между которыми тоже заполнены углеродным материалом, «матрицей». Матрицу получают разложением подходящих органических веществ, жидких или газообразных, прямо в объеме каркаса, при помощи специальных печей; каркас получают методом плетения или сборки и последующего отжига углепластиковых стержней.

Губка из вольфрама

Разрабатываются неметаллические композиционные материалы и для ЖРД. Например, замена металлического соплового насадка двигателя разгонного блока ДМ-SL, используемого в составе РН «Зенит-3SL» комплекса «Морской старт», позволила сэкономить около 10 кг массы самого ЖРД да еще повысить удельный импульс тяги на 8−10 с (1 с удельного импульса тяги — это 20 кг полезного груза на геостационарной орбите!). Впервые насадок из УУКМ был использован при запуске 10 июня 2003 года.

Разгонные блоки работают в вакууме, а струя газов самого двигателя содержит избыток горючего. Задача защиты от окисления УУКМ раньше не ставилась, но теперь наши ведущие КБ пытаются использовать композитные сопла и для ЖРД нижних ступеней (в частности, в рамках программы «Союз-3»). В атмосферном воздухе углерод может загореться, но уже разработаны и готовы к внедрению технологии защиты УУКМ карбидом кремния.

Новые металлизированные виды топлива могут потребовать повышения температуры в критическом сечении сопла до 40000С, так что традиционные УУКМ уже не справятся. Чтобы «облегчить им жизнь» в таких условиях, нужно частично заменить матрицу на тугоплавкие соединения типа карбида гафния или карбида тантала. Это позволит добиться эффекта, который был ранее достигнут в известном сплаве ВМДФ (пористый вольфрам, пропитанный медью): температура повышается, медь испаряется, уносит часть тепла и тем самым защищает вольфрам на время эксплуатации.

Микродвигатели

Композиты из карбида кремния позволят совершить революцию в строительстве микро-ЖРД, необходимых для ориентации космических аппаратов и коррекции их траекторий. Нынешние двигатели чаще всего однокомпонентные, работающие на разложении гидразина, вытеснительная подача которого в камеру сгорания требует тяжелых баков и большого количества вытесняющего газа. Керамо-матричные композиты с каркасом из волокон карбида кремния и матрицей из такого же карбида кремния позволят к 2010 году либо чуть позже создать материал, из которого можно изготовить колесо ротора турбины вместе с лопатками для турбонасосного агрегата такого микро-ЖРД. Условия достаточно жесткие — 10 000 об/мин, температура свыше 17000С. Ни один металлический материал в таких условиях работать не может. Но это еще не все — крутиться ротор этой турбины будет в композитных же подшипниках скольжения! Дело в том, что традиционные подшипники качения требуют смазки, но ни одна смазка не сможет работать в столь жестких условиях долгое время — либо испарится, либо выгорит. Сейчас есть уже два класса материалов — один на основе углепластика, другой — углерод-углерода; они могут применяться для изготовления вкладышей подшипников скольжения, которые полностью заменят подшипники качения. Углерод-углеродный вариант работает при температурах до 4500С, а углерод-карбидный — до 20000С. Еще одно достоинство таких материалов состоит в том, что они могут работать в агрессивных средах.

Переход на турбонасосную подачу и высокоэнергетическое топливо позволит улучшить экономичность микро-ЖРД и весовое совершенство космических аппаратов. С 2002 года в этой области действует программа, утвержденная, курируемая и финансируемая Роскосмосом.

Еще одна перспективная технология — металло-композитные материалы, которые можно применить в составе микро-ЖРД: это многослойные композиции, полученные методом послойного вакуумного напыления. Например, микрокамера из молибдена и ниобия. Молибден — прочный, термостойкий, но очень хрупкий материал, ниобий — также термостойкий, не очень прочный, но весьма пластичный материал. Набирая от 16 до 18 слоев толщиной 15−20 микрон каждый, мы получаем композицию, которая работает при весьма высоких температурах, порядка 2100−22000С, и обеспечивает высокие массовые характеристики. Этот металлический КМ может рассматриваться как альтернатива материалам типа SiC-SiC, поскольку он дешевле и в ряде случаев перспективнее.

Расскажем и о композитах с металлической матрицей. По сравнению с традиционными титановыми или алюминиевыми сплавами удельная жесткость композита «бор-алюминий» выросла в три раза (правда, при увеличении цены примерно в десять раз). Тем не менее этот материал чрезвычайно перспективен для ферменных конструкций КА, там, где толщина, а следовательно, и масса конструкции определяются не прочностью, а устойчивостью. Уже сейчас такой композит серийно используется в разгонных блоках «Фрегат» НПО Лавочкина и DM-SL РКК «Энергия».

Конечно, трудно себе представить «ракету», состоящую практически полностью из неметаллических материалов. Тем не менее будущее за ними. На смену крылатым металлам приходят крылатые неметаллы.

Статья опубликована в журнале «Популярная механика» (№3, Март 2008).