В традиционных компьютерах единицей информации является бит, а в квантовых — кубит. Бит находится только в одном из состояний: либо ноль, либо единица. Кубит с некоторой вероятностью может быть в обоих этих состояниях. Что в квантовой механике и называется суперпозицией.
Из битов в состояниях 1 и 0 можно составить только четыре пары (00, 01,10 и 11). А вот количество состояний для кубитов составляет 2 в степени n. Для четырех кубитов это 2 в четвертой степени, то есть 16. А для 10 — уже 1024. И это число растет экспоненциально с каждым новым кубитом. 20 кубитов могут хранить уже больше миллиона значений одновременно. А на число комбинаций всех возможных состояний квантового компьютера из 300 кубитов уже не хватит атомов во Вселенной. Еще одно странное свойство кубитов — запутанность, когда каждый кубит мгновенно реагирует на изменение состояния другого кубита. Измерив один кубит, мы можем узнать состояние другого кубита, запутанного с ним.
Обычный компьютер выполняет алгоритм только для одного набора данных. Квантовый логический элемент может обработать несколько входных значений. Задача исследователей — управлять кубитами так, чтобы каждый выполнял свое собственное задание. Тогда вычисления будут проводиться параллельно. Благодаря увеличению количества состояний квантовый компьютер сможет получать результат быстрее, чем обычный, — это квантовое превосходство.
Предполагается, что квантовые компьютеры будут использоваться для решения сложных задач корреляции — например, нахождения элементов в базах данных, шифровки и дешифровки данных. Еще одно важное применение — моделирование молекул. Квантовые компьютеры могут значительно ускорить перебор параметров и поиск нужных корреляций, что позволяет получить заданные свойства. Ученые и бизнесмены надеются на революцию в медицине, органической химии и материаловедении. На качественно новый уровень выйдут возможности систем искусственного интеллекта.
Правда, пока проблема заключается в том, что вы получаете результат с вероятностью, которая может быть меньше 100%. Так что в некоторых областях квантовые компьютеры не могут заменить классические. Ученым только предстоит решить проблемы считывания и интерпретации полученных результатов и коррекции ошибок. Если все заработает, мы будем жить в эпохе совсем иных технологических возможностей. Важность создания квантовых компьютеров для государства сравнима с важностью атомных технологий в XX веке — по влиянию на экономику и обороноспособность, и все ведущие державы вступили в квантовую гонку. И по сложности фундаментальных задач, и по объему новых технологий, которые предстоит освоить, все это напоминает знаменитый «атомный проект». Государство привлекает лучших ученых страны, однако специалисты говорят о необычайно сложной административной задаче управления и синхронизации разных групп ученых и целых отраслей промышленности. Неслучайно во главе проекта «Квантовые вычисления» была поставлена госкорпорация «Росатом». За четыре года требуется совершить невероятное — создать к 2024 году отечественный 100-кубитный квантовый компьютер. «Популярная механика» пообщалась с участниками проекта и заразилась от них оптимизмом.
Хитрая технология
Квантовые вычисления не универсальны, они не способны заменить традиционные компьютеры. «Информация обрабатывается хитро, мы пользуемся всем большим пространством состояний, чтобы ее переваривать, но наши возможности считать ее оттуда невелики. Потому что при измерении у вас происходит коллапс до двоичного кода, — говорит старший научный сотрудник Центра квантовых технологий МГУ, руководитель сектора квантовых вычислений Станислав Страупе. — Поэтому квантовые алгоритмы — наука о том, как извлечь из этого многомерного пространства полезную информацию за небольшое количество измерений». Математический аппарат квантовой теории готов с середины XX века, и сейчас проблема не в математике, а в аппаратной реализации. Главные технологии, на которых сосредоточены все усилия, — ионные ловушки, нейтральные атомы, фотоны и сверхпроводники. Как и в атомном проекте, никто точно не знает, какая из технологий выйдет в итоге в лидеры, поэтому развивать требуется все.
Сверхпроводники
Сегодня вперед вырвались квантовые компьютеры на базе сверхпроводников. Физика сверхпроводников хорошо изучена, поэтому IBM, Google и D-Wave используют эту технологию. В сообщении Google о достигнутом квантовом превосходстве речь шла именно о процессоре на базе сверхпроводников.