Компьютерное зрение: что искусственный интеллект видит в зеркале

Искусственный интеллект, как оказалось, весьма неплохо справляется с задачей обработки зеркально отраженных изображений.
Компьютерное зрение: что искусственный интеллект видит в зеркале

Компьютерная обработка изображений — нетривиальная задача для искусственного интеллекта. Поэтому на этапе машинного обучения, когда электронный “разум” ищет общие черты у объектов на снимках и заполняет свою базу данных, требуется огромное количество изображений. Чтобы сократить время поиска “тренировочных” картинок, исследователи часто хитрят: зеркально отражают часть изображений, увеличивая их число вдвое.

Как же искусственный интеллект реагирует на подобную “аферу”? Понимает ли машина, что перед ней не “Друг”, а “Гурд”? Исследователи из Корнельского университета всерьез заинтересовались этими вопросами, ведь Вселенная не симметрична. То, как мы смотрим на нее, имеет значение. Доклад ученых, в котором они назвали довольно необычные способы разоблачения зеркальных изображений искусственным интеллектом, был недавно представлен на престижной конференции по компьютерному зрению.

Машины удивили ученых. Точность, с которой искусственный интеллект распознает отраженные изображения, составила от 60 до 90%. Чтобы обнаружить признаки, по которым машинный алгоритм отличает “перевертыш” от оригинала, группа ученых под руководством Ноя Снейвли, доцента кафедры компьютерных наук в Корнельском университете, создала тепловую карту. Карта отображала области, которые казались “подозрительными” искусственному интеллекту. Некоторые признаки зеркальных изображений были очевидны, другие же оказались настолько неожиданными, что их с трудом различали люди.

Самой легкой подсказкой был текст. Искусственный интеллект мгновенно определял зеркальные изображения по перевернутым буквам. Тогда исследователи исключили такие снимки из эксперимента. В числе других признаков оказались наручные часы, пуговицы на рубашках, которые, как правило, с левой стороны, телефоны — большинство людей держат девайсы в правой руке, а также другие привычки правшей. 

“Хорошо”, — сказали ученые и усложнили задачу еще больше. Теперь в распоряжении искусственного интеллекта были только изображения лиц. Области, которые интересовали на этом этапе машину — это определенный участок волос, направление взгляда (по каким-то причинам, большинство людей на портретных фотографиях смотрят влево) и... бороды. “Мы понятия не имеем, какую информацию алгоритм черпает из изображения бороды, — сказал Снейвли, — Возможно, способ расчесывания и бритья каким-то образом выдает в человеке правшу”.

Каждый из используемых машиной признаков не выглядит достаточно убедительным в отдельности. Однако ученые убеждены, что в совокупности ряд ключей для анализа вполне надежен. В любом случае, изучение реакции искусственного интеллекта на зеркально отраженные снимки имеет важное значение. Оно поможет выявить погрешности на этапе машинного обучения, а также пригодится для идентификации фальшивых снимков, которыми кишит сегодня Интернет. В будущем же подобные алгоритмы могут уберечь высокоорганизованного робота от “драки” с зеркалом, в котором он увидит и распознает отраженного себя.