В космос без ракеты: возможно ли это?

В космос без ракеты: возможно ли это?

Как только человек осознал, что может покинуть Землю при помощи ракет, он начал искать средства обойтись без них. Из фантастических произведений эти идеи переместились на кульманы конструкторов.
Виталий Егоров

Альтернативная космонавтика развивалась двумя путями: созданием неракетных или нереактивных средств выхода на низкую околоземную орбиту и созданием вспомогательных средств, облегчающих ракете достижение космоса. К первым можно отнести гигантские пушки, ядерные взрыволеты, орбитальный лифт, «гиперпетлю»; ко вторым — самолетные и аэростатные старты, ядерный гиперзвуковой «гурколет», электромагнитные и железнодорожные ускорители и т. п.

Из пушки на Луну

До появления жидкостных ракетных двигателей единственным средством выхода в открытый космос считалась артиллерия. В основополагающем труде Исаака Ньютона «Математические начала натуральной философии» понятие космических скоростей объяснялось с помощью пушки, которая стреляет все дальше и дальше. Хотя уже тогда было понятно, что, даже если гигантскую пушку удастся построить, стартовые перегрузки убьют любой экипаж. В фантастическом произведении Жюля Верна эту проблему удалось решить, но в реальном мире ей нет решения по сей день.

Однако пушка подойдет только для отправки межпланетных или межзвездных зондов, скорость которых превысит вторую или третью космическую. Для запуска околоземных спутников с первой космической скоростью потребуется ракетная ступень, так как орбита выпущенного снаряда будет пролегать через точку старта, и он неминуемо врежется в Землю. Избежать этого можно коррекцией орбиты на космическом отрезке траектории, то есть пушку можно рассматривать только в качестве вспомогательного средства, и совсем без ракет обойтись не удастся.

Попытка реализовать идеи Жюля Верна была предпринята в 1940-е в Третьем рейхе: гигантская пушка, создаваемая по программе «Фау-3», врытая на глубину в сотню метров, конструировалась для обстрела Лондона из Франции. Снаряды должны были преодолевать по 150 км, но стройка на берегу Ла-Манша была уничтожена британской авиацией.

Пушка Пушка Внутри снаряда, выпущенного из артиллерийского орудия, летали на Луну герои романа Жюля Верна, однако в реальности из-за высоких перегрузок стрельба в космос людьми невозможна. Тем не менее такой способ вывода на орбиту деталей и материалов исключить нельзя. Лучше всего космическую пушку размещать в море.

На заре космической эры в 1961—1967 годах пушечные эксперименты продолжились в США. В ходе «Проекта высотных исследований» (High Altitude Research Project, HARP) было создано несколько пушек разного калибра, стреляющих вверх до высоты 180 км. Но из-за очевидных успехов космонавтики и невозможности совершения космических запусков при помощи орудий проект свернули.

Попытка добиться от артиллерии возможностей баллистических ракет была предпринята в Ираке в 1980-е. Руководил проектом американский инженер Джеральд Булл, ранее возглавлявший работу в HARP. Орудие калибром 1 м должно было запускать 600-килограммовый снаряд на 1000 км. Однако до практики дело не дошло: Булл был убит. Недостроенную систему уничтожили американские войска в ходе операции «Буря в пустыне».

В 1990-е в США продолжились эксперименты с пушками, позволяющими достигать околокосмических скоростей. Проект SHARP (Super HARP) на базе лаборатории Лоуренса в Калифорнии проводил эксперименты с пушкой на легких газах, придающих 5-килограммовому снаряду скорость 3 км/с. Пушки на легких газах — водороде или гелии — действуют по принципу пневматических, только сжимается перед выстрелом не воздух, а газ низкой плотности. Такие пушки, сообщающие снаряду скорость до 6−7 км/с, используются для моделирования столкновений с метеоритами или космическим мусором. Результатом экспериментов стал проект пушки, способной разгонять снаряд до 11 км/с, но миллиард долларов, требуемый на реализацию этой идеи, выделен не был.

Есть и физические ограничения: так, снаряд должен набрать космическую скорость только за время движения в стволе. Эта скорость должна быть выше орбитальной, чтобы компенсировать торможение в атмосфере. На скорости несколько километров в секунду внешняя поверхность снаряда нагревается за счет трения о воздух и формирования ударной волны. То есть снаряд должен противостоять не только колоссальным динамическим нагрузкам, но и температуре. Впрочем, справляться с аэродинамическим нагревом уже научились при запуске баллистических ракет и космических аппаратов, а вот обойти перегрузки пока не представляется возможным.

Теоретически артиллерийскую систему орбитального запуска лучше всего размещать на море, в виде погружаемого ствола, тогда ее можно было бы перемещать и направлять в любую точку небосвода, не привязываясь к сухопутному лафету. С другой стороны, строительство в горах помогло бы избавиться от части тормозящего воздействия атмосферы. Космическая пушка могла бы выводить на орбиту в промышленных масштабах какие-нибудь простые грузы, вроде стройматериалов или сырья для производства, но пока потребности в таких запусках нет даже в отдаленной перспективе, поэтому и пушки никто не строит.

Электромагнитная пушка рассматривается как возможное средство запуска в безвоздушной среде — с орбитальных станций или Луны. Перегрузок не избежать и там, но они будут ниже.

Орбитальный лифт

Концепцию космического лифта в виде тонкой башни, висящей в небе за счет центробежной силы, изложил еще Константин Циолковский в своем очерке «Грезы о Земле и небе и эффекты всемирного тяготения» в 1895 году. Советский инженер Юрий Арцутанов в 1960 году развил эту идею, предложив опустить с космической станции кабель на Землю. Станция должна вращаться в плоскости экватора на геостационарной орбите на высоте около 36 тыс. км. Еще дальше от Земли должен вращаться противовес, который будет уравновешивать всю систему за счет центробежной силы. В роли противовеса можно было бы использовать астероид или еще более массивную станцию, которая подошла бы для запуска межпланетных аппаратов и кораблей.

Лифт Лифт Давняя идея Циолковского, Арцутанова и Артура Кларка, возможно, когда-нибудь и воплотится в жизнь, но для этого понадобятся новые материалы, а также потребность постоянно что-то возить на орбиту. Ну и проблему космического мусора, который может перерезать трос, нельзя сбрасывать со счетов.

На сегодняшний день главным технологическим препятствием на пути к воплощению этой идеи является отсутствие достаточно прочного материала малой плотности, из которого можно было бы изготовить трос. Трос должен выдерживать собственную массу, геостационарную станцию и противовес. Кроме этого, тросу придется противостоять и динамическим нагрузкам, связанным с перемещением грузов, коррекцией орбиты, силой Кориолиса, давлением солнечного света и гравитационным влиянием Луны, Солнца и планет. Теоретически, требуемой прочностью должны обладать углеродные нанотрубки, хотя пока не создана технология производства трубок достаточного качества и длины.

Следующая задача, приближающая реализацию космического лифта, — разработка подъемника. Поскольку в космическом лифте не предполагается система из нескольких кабелей и тросов, как в обычном лифте, для космоса требуется кабина, способная самостоятельно взбираться по тросу. Энергию для подъема предполагается передавать по самому тросу или с помощью лазерного луча. Такой подъемник можно делать уже сейчас, и с 2006 года в разных странах проводятся конкурсы разработчиков. В 2006—2010 годах такие конкурсы проводились в США при участии NASA, однако потом к ним утратили интерес из-за отсутствия прогресса в создании космического троса. Участники конкурсов сконструировали устройства, способные подниматься со скоростью до 5 м/с. Затем идеи космического лифта подхватили в Японии, Германии и Израиле, где тоже сконцентрировались на роботе-подъемнике. Японская строительная компания Obayashi, специализирующаяся на строительстве зданий, мостов и тоннелей, предполагает разработать космический лифт к 2050 году.

Однако создать трос и подъемник — это полдела. Остается еще немало проблем. Например, напряженный трос, протянутый через космическое пространство, представляет собой слишком уязвимую мишень для космического мусора. Сейчас в околоземном пространстве летает более полумиллиона фрагментов мусора размером более 1 см со скоростями до 8 км/с. Столкновение на такой скорости даже с небольшим металлическим фрагментом равносильно попаданию бронебойного снаряда. Расчеты показывают, что при сохранении нынешней плотности космического мусора вероятность столкновения сантиметрового обломка космического мусора с тросом шириной 5 см составляет примерно 1/1000 в сутки, то есть 1 раз в 3 года. Не исключена опасность террористического акта: в арсенале террористов появились дроны.

Не стоит забывать и о космической радиации. Наиболее сильно воздействие радиационных поясов Ван Аллена на высотах от 1000 до 17 000 км именно в плоскости экватора, где придется подниматься лифту. Преодоление нижнего, самого опасного протонного пояса при скорости 100 м/с займет 17 часов. Для сравнения, корабли Apollo, летавшие на Луну, проскакивали его менее чем за 10 минут на скорости 10−11 км/с и старались держаться подальше от плоскости экватора, близкой к эпицентру радиационного пояса.

В конечном счете главной проблемой космического лифта остается его экономическая целесообразность. Пока человечеству просто не требуется такого интенсивного обмена грузами с космосом, который сделал бы рентабельным капитальное строительство лифта — с высокими рисками, огромной стоимостью обслуживания и непонятной перспективой. Возможно, надежда появится при начале активной добычи полезных ископаемых на астероидах или Луне, но пока человечество не нуждается в этих ресурсах — то же самое есть и на Земле.

Петля Лофстрома

Недостатков космической пушки и космолифта лишена конструкция пусковой петли, предложенной инженером Кейтом Лофстромом в 1981 году. Эта идея предполагает использование только существующих и освоенных технологий, в частности электромагнитной левитации (маглева), однако требует постоянного поддержания динамической структуры в движении для сохранения формы.

Петля Петля В высшей степени гипотетический транспорт для вывода на орбиту космических аппаратов. Аппараты будет закидывать в космос закольцованный шнур, непрерывно движущийся со скорость 12−14 км/с в магнитном поле. Проблема в высоких энергозатратах и отсутствии потребности в непрерывных запусках на орбиту.

Основой пусковой петли является закольцованный металлический гибкий кабель, протянутый между двумя станциями на Земле на расстоянии 2 тыс. км. Кабель находится в подвешенном состоянии между кольцевыми магнитами внутри трубы и раскручивается между станциями. За счет момента инерции вращающегося кабеля вся конструкция должна подняться в воздух на высоту 80 км. Направляющие растяжки должны сформировать часть дуги параллельно земной поверхности. Таким образом, получится гигантская арка, позволяющая поднимать грузы над поверхностью Земли в околокосмическое пространство и задавать им ускорение по направляющим, построенным тоже по принципу маглева.

Несмотря на кажущуюся доступность технологий, этот проект еще менее реален, чем космические пушка или лифт. Проблема даже не в начальных инвестициях — по оценкам разработчика, должно хватить 10 млрд долларов, а в расходах на поддержание структуры в работоспособном состоянии. Подобная система требует нескончаемого потока грузов в космическое пространство и высокой надежности, не допускающей и секундного простоя.

Проектов альтернативных средств достижения космоса предложено немало. Однако все они проигрывают ракетам из-за своей сложности и отсутствия реальной потребности в них. Человечеству пока не требуется постоянный грузопоток на сотни тонн в космос и из космоса, а ракеты еще не исчерпали ресурс снижения стоимости.

Статья «В космос без ракеты» опубликована в журнале «Популярная механика» (№3, Март 2018).
Понравилась статья?
Подпишись на новости и будь в курсе самых интересных и полезных новостей.
Спасибо.
Мы отправили на ваш email письмо с подтверждением.
Комментарии

Авторизуйтесь или зарегистрируйтесь,
чтобы оставлять комментарии.