Российские физики разработали компактный плазмонный генератор на основе графена

Исследователи из лаборатории оптоэлектроники двумерных материалов МФТИ, Института радиотехники и электроники имени В.А.Котельникова и университета Тохоку (Япония) теоретически обосновали возможность создания источников когерентных плазмонов, которые станут ключевыми элементами оптоэлектронных схем будущего. Работа прибора основана на уникальных свойствах ван-дер-ваальсовых гетероструктур — композитов из графена и родственных слоистых материалов.
Российские физики разработали компактный плазмонный генератор на основе графена

Работа физиков, посвященная свойствам плазмонов, была опубликована в журнале Physical Review B/. Плазмон — это псевдочастица, представляющая собой смесь колеблющихся электронов и привязанного к ним электромагнитного поля. С помощью плазмонов можно генерировать, передавать и принимать сигналы в интегральных схемах; плазмоны могут выступать посредниками между электронами и световыми волнами в высокоэффективных фотодетекторах и источниках излучения, в том числе в активно осваиваемом терагерцовом диапазоне. Интересно, что энергия плазмона может быть сосредоточена на расстояниях много меньших, чем длина световой волны: следовательно, работающие на плазмонном принципе приборы гораздо миниатюрнее своих фотонных аналогов. Наиболее «спрессованными» являются плазмоны, привязанные к проводящим плоскостям, и на основе таких плазмонов можно создавать наиболее компактные оптоэлектронные приборы.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Но где же можно найти проводящую плоскость, поддерживающую сверхкомпактные плазмоны? На протяжении уже более чем сорока лет такие объекты создают путем выращивания друг на друге нанометровых слоев полупроводников с близкой кристаллической структурой. При этом определенные слои обогащаются электронами и приобретают хорошую электропроводность. Подобные «слоеные пироги» называются гетероструктурами, и их создание было отмечено Нобелевской премией Жореса Алферова в 2000 году.

Однако выращивание нанометровых слоев является не единственным способом получения плоских полупроводников. В последние годы внимание исследователей сосредоточено на другом, истинно двумерном материале — графене. Графен представляет собой слой углерода толщиной в один атом, и может быть получен простым расслоением кристалла графита. За исследование уникальных электронных свойств графена — а они радикально отличаются от свойств «классических» гетероструктур — выпускникам МФТИ Андрею Гейму и Константину Новоселову в 2010 году была присуждена Нобелевская премия. На основе графена уже были созданы транзисторы для приема сверхвысокочастотных сигналов, быстродействующие фотодетекторы, и даже первые прототипы лазеров. Однако свойства графена можно обогатить еще больше, наложив его на другой слоистый материал с похожим кристаллическим строением. По сути, из материалов, похожих на графен, можно создавать те же «слоеные пироги» — гетероструктуры. Только теперь отдельные их составляющие скрепляются ван-дер-ваальсовыми силами, поэтому такие гетероструктуры называются ван-дер-ваальсовыми.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

«Рассчитываемая нами структура, — рассказал пресс-службе МФТИ Дмитрий Свинцов, ведущий автор исследования, — является, по сути, активной средой для плазмонов. Более привычными примерами активных сред является гелий-неоновая смесь в газовом лазере или полупроводниковый диод в лазерной указке. Проходя через такие среды, свет усиливается, а если поместить активную среду между зеркалами, то среда будет самопроизвольно генерировать свет. Комбинация "активная среда + зеркала" составляет основу лазера, а активная среда для плазмонов является необходимым элементом плазмонного лазера, или спазера. Если активную среду периодически включать и выключать, то можно получать плазмонные импульсы "по заказу", что может найти приложение для передачи сигналов в интегральных схемах. Родившиеся в активной среде плазмоны также могут "отвязываться" от слоев графена и становиться фотонами в свободном пространстве. Это дает возможность создавать перестраиваемые источники излучения терагерцового и дальнего инфракрасного диапазона».

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

В своей работе исследователи показывают, что гетероструктура из двух слоев графена, разделенных тонкой прослойкой дисульфида вольфрама, может не только поддерживать компактные двумерные плазмоны, но и генерировать их при приложении электрического напряжения.

Активная среда, конечно же, не является вечным двигателем, и рождающаяся частица (фотон или плазмон) должна откуда-то брать энергию. В гелий-неоновом лазере эта энергия берется от электрона, заброшенного на высокую атомную орбиталь электрическим разрядом. В полупроводниковом лазере эта энергия берется при взаимном уничтожении отрицательных и положительных носителей заряда — электронов и дырок, которые поставляются источником тока. А в предлагаемой двухслойной графеновой структуре плазмон берет энергию от электрона, «прыгающего» со слоя с высокой потенциальной энергией на слой с низкой, как это показано на рисунке. Образование плазмона в результате такого прыжка похоже на образование волн при погружении ныряльщика в воду.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Хотя, говоря более точно, перемещение электрона со слоя на слой больше похоже на просачивание сквозь барьер, а не на прыжок через него. Это явление называется туннелированием, и обычно вероятность туннелирования очень мала уже для нанометровых барьеров. Исключение составляет так называемое резонансное туннелирование, когда каждому электрону из одного слоя уже «подготовлено место» в соседнем слое.