На основе результатов многолетнего эксперимента российские и американские ученые создали математическую модель социального взаимодействия, объясняющую нашу склонность и нежелание сотрудничать друг с другом.
Редакция ПМ
Maтематики построили модель сотрудничества «заключенных»
Елена Хавина, пресс-служба МФТИ.

Группе исследователей из МФТИ, Сколтеха, ТГУ и Орегонского университета удалось теоретически описать отклонения участников от рационального поведения в «Дилемме Заключенного» — известной проблеме теории игр. После знакомства и недолгого общения участников лабораторных экспериментов уровень их кооперации повысился со стандартных 20% до более чем 50%. Результат был опубликован в журнале PLoS One.

Теория игр — это наука о принятии решений, математический метод изучения оптимальных стратегий в играх, где игроки обладают разными интересами и могут действовать нерационально. Её методы активно используются в экономике, политологии, психологии и многих других социальных сферах жизни.

В исследовании применялись методы экспериментальной экономики — науки, которая позволяет выявлять модели поведения людей в определенных социально-экономических ситуациях, прослеживать логику принятия экономических решений.

Ученые в течение трех лет проводили эксперименты в Лаборатории экспериментальной экономики МФТИ совместно со Сколтехом. Исследователи изучали индивидуальные процессы принятия решения в различных условиях, а также влияние социальных факторов, психологии и физиологии. В опубликованной работе исследователи представили результаты восьми экспериментов, в каждом из которых принимало участие 12 игроков. Всего было задействовано 96 человек: 59 мужчин и 37 женщин.

Студенты МФТИ, которые принимали участие в экспериментах, изначально были незнакомы, и вначале действовали по стандартной схеме выбора стратегий в игре «Дилемма Заключенного». Участникам предлагалось анонимно взаимодействовать друг с другом посредством двух действий: кооперировать (К) или предавать (П). По правилам игры, если один игрок выбирает «К», а другой «П», предатель получает 10 очков, а кооператор — 0 очков. Если оба игрока выбирают «К», каждому достается по 5 очков, если «П» — каждый получает всего по 1 очку. Зная правила, можно понять, что сотрудничать выгодно, хотя с точки зрения математики рациональнее выбирать предательство. Именно эта ситуация является в данной игре равновесием по Нэшу, то есть математически верной стратегией, названной именем автора — знаменитого нобелевского лауреата Джона Форбса Нэша. Отклонение от равновесия Нэша не приводит к увеличению выигрыша, если другие участники игры свою стратегию не меняют. В начале игры уровень кооперации в группах составил в среднем 21%, то есть участники скорее выбирали рациональную стратегию предательства. Но после знакомства и «социализации», средний уровень кооперации увеличился до 53% и выше, то есть в среднем участники скорее отклонялись от равновесия Нэша, чем придерживались рациональной стратегии.

Расчеты показали, что поведение участников до социализации может быть описано с помощью модели Quantal Response Equilibrium (QRE). Концепция QRE возникла на стыке теории игр и экспериментальной экономики для объяснения наблюдаемого поведения участников лабораторных экспериментов в тех случаях, когда оно отличается от равновесия Нэша. Эта модель хорошо соответствовала практике для порядка 20% процентов отклонений. Но оказалось, что стандартный подход QRE не может применяться для описания поведения участников после социализации, потому что отклонений участников от равновесия Нэша в этом случае становится слишком много — больше половины, то есть их уже нельзя считать случайными ошибками, как это делается в традиционной модели.

Ученые построили и проанализировали модель повторяющейся игры «Дилеммы Заключенного». Каждый участник мог реагировать только на то, какую стратегию (кооперировать или предавать) реализовал его случайный анонимный партнер ход назад. Анализируя эту информацию, он делал выбор стратегии на текущем ходе. Такой подход, названный в честь автора — русского математика Андрея Маркова, в итоге позволил получить игру в нормальной форме: то есть состоящей из множества игроков, множества чистых стратегий и множества действий каждого игрока. Также удалось показать, что выигрыши нелинейно зависят от вероятностей поведения игроков. Ученые нашли в явном виде семейство внутренних симметричных равновесий Нэша: набор оптимальных стратегий, одинаковый для обоих партнеров и зависящий только от вероятностей поведения игроков.

Таким образом, ученым удалось построить теоретическую модель, позволяющую описывать преобладание выбора кооперативных стратегий в повторяющейся игре «Дилемма Заключенного» и соответствующую экспериментальным данным.

Парадокс индивидуальной рациональности разбирается на примере «Дилеммы Заключенного» уже на первой лекции практически любого курса по теории игр. Тем не менее, эта игра в чем-то сложнее шахмат: применение каждым участником своей наилучшей стратегии приводит к плохому исходу для всех. Нам удалось полностью исследовать повторяющуюся «Дилемму Заключенного» в марковских стратегиях. Более того, нам повезло еще раз. Оказалась, что поведение участников экспериментов приближается к теоретическим равновесным положениям, найденных нами, причем при разных уровнях социализации. Еще один удивительный пример, как математическая модель рождается из анализа поведения людей, — пояснил Иван Меньшиков, доцент кафедры анализа систем и решений МФТИ.

По словам ученых, остаются открытыми вопросы теоретического обоснования результатов таких игр, как «Игра на доверие» и «Игра-Ультиматум», экспериментальные данные которых не соответствуют известным теоретическим игровым моделям в рамках исследования влияния социального взаимодействия.

Материал подготовлен по пресс-релиз МФТИ.

Понравилась статья?
Подпишись на новости и будь в курсе самых интересных и полезных новостей.