Исследователи из Высшей школы экономики и Наноцентра Ювяскуля (Финляндия) впервые экспериментально продемонстрировали квантовый размерный эффект в металлическом нанопроводе. Обнаруженный эффект универсален и должен приниматься во внимание при проектировании наноэлектронных систем сверхмалых размеров.
Ученые продемонстрировали, как металл превращается в диэлектрик

В исследовании, проведенном под руководством профессора департамента электронной инженерии МИЭМ ВШЭ Константина Арутюнова, показано, как электрическое сопротивление металлического нанопровода из висмута в процессе уменьшения его диаметра немонотонно меняется и затем резко возрастает, переводя объект в диэлектрическое (изолирующее) состояние. По мнению ученых, квантово-размерные эффекты связаны с фундаментальным явлением — квантованием энергетического спектра электронов. И наблюдать его можно только в объектах исключительно малых размеров. Носителем заряда является, как правило, электрон и чёткое его положение определить невозможно, однако мы знаем вероятность его нахождения в определённой области. Эта вероятность описывается квантовомеханической волновой функцией, а у каждой волны есть свой характерный масштаб — длина волны, — поясняет один из соавторов исследования, студент 2-го года магистратуры ВШЭ Егор Седов. Так вот, если мы изготовим проводник, размеры которого будут сравнимы с длиной этой волны, произойдёт качественное изменение свойств системы. В таком случае говорят о квантовании энергетических уровней, то есть расщеплении непрерывного спектра на четко определённые уровни. Кроме этого, есть так называемый, уровень Ферми, который отделяет заполненные энергетические состояния от незаполненных. Так вот, при уменьшении размеров проводника энергетические уровни начинают сдвигаться относительно этого порогового значения, и в момент, когда последний заполненный уровень пересекает уровень Ферми, образец переходит из металлического в диэлектрическое состояние. Это и есть суть квантового размерного эффекта в нашем случае.

Исследователи выбрали первый, так как, по их мнению, он соответствовал более «чистому» эксперименту. Основной проблемой при этом стала задача уменьшить структуру так, чтобы не повредить ее. Уменьшались размеры наноструктур травлением направленным пучком ионов инертного газа (аргона), тем самым «стачивая» поверхность. Этой задачей занимался Кари-Пека Риконен из Наноцентра Ювяскуля. Был найден оптимальный режим обработки, при котором шероховатость поверхности составляла примерно 1 нанометр (около двух атомных слоев). При этом самый маленький диаметр провода составлял около 40 нм, а стартовый диаметр — порядка 300 нм. Сами образцы изготавливались при использовании достаточно стандартного процесса электроннолучевой литографии и направленного вакуумного напыления. После изготовления образцов и тщательной их проверки, лучшие отбирались для измерений. Затем многократно повторялся цикл ионного травления и измерений до того момента, когда структура утончалась до такого предела, что просто выходила из строя (т.е. рвалась). Главным результатом работы стало то, что этот заветный переход металл-диэлектрик существует не только в расчетах теоретиков, но и может экспериментально наблюдаться. В более ранних работах такой результат был достигнут на тонких плёнках, также были попытки сделать это и в нанопроводах, но не слишком успешные. Так что можно сказать, что наша работа — одна из первых, в которой экспериментально продемонстрирован квантовый размерный эффект в металлическом проводнике. «Квантовый размерный эффект — универсальное явление, которое должно присутствовать абсолютно в любых системах достаточно малых размеров. Таким образом, наши исследования позволяют определить фундаментальные ограничения на миниатюризацию элементов (нано)электронных цепей», — говорит руководитель проекта Константин Арутюнов.