Как многие, наверное, помнят, доктор Феликс Хонникер, персонаж ироничной антиутопии Курта Воннегута «Колыбель для кошки», создал таинственный и ужасный «лед-девять». Стоило лишь бросить один кристаллик этого льда в лужу, как вся влага на Земле, включая атмосферную, начинала кристаллизоваться и твердеть уже при положительной температуре. Фантастика фантастикой, но у творения доктора Хонникера есть некий реальный прототип. Сам же писатель вдохновлялся трудами собственного брата Бернарда, известного химика и метеоролога, придумавшего, как вызвать искусственный дождь или снег

Лаборатория Перед началом активного воздействия на облака со специального самолета-метеолаборатории проводится разведка состояния облачности. На борту самолета установлен измерительно-вычислительный комплекс, получающий и обрабатывающий информацию от разнообразных датчиков
Ледяной факел На фото показан распылитель жидкого азота, установленный на самолете Ан-26
Общий вид генератора мелкодисперсных частиц льда
Стрельба по облакам На фото — самолетные устройства отстрела пиропатронов с йодистым серебром. Конструктивно это «оружие» схоже с установками для отстрела ложных тепловых целей
Генератор льдообразующего аэрозоля ГЛА-105 — на основе 105-мм фейерверочного изделия
На основе штатных пусковых установок — одноствольной
На основе штатных пусковых установок — многоствольной

Точнее говоря, Бернард Воннегут был лишь одним из американских ученых, работавших в этой области. Другой исследователь — физик Винсент Шефер — экспериментировал с искусственно созданным в камере переохлажденным (то есть состоящим из находящейся при минусовой температуре, но не принявшей кристаллическую форму водяной взвеси) облаком. Чтобы заставить воду изменить агрегатное состояние, он «вдувал» в облако мелкодисперсные вещества (соль, тальк, пыль), частички которого могли стать центрами кристаллизации. Но почему-то никак не становились. Наконец Шефер, решив, что температура в камере недостаточно низка, бросил туда кусочек сухого льда (замороженного углекислого газа CO2) и… в насыщенном влагой воздухе заклубился густой сизый туман, а затем пошел снег. Капельки воды самопроизвольно кристаллизовались и выпали в виде осадка. Эффекта с аналогичным результатом, но несколько иной природой (об этом мы скажем позже) добился и Бернард Воннегут — правда, с помощью не сухого льда, а йодистого серебра (AgJ). Эти два лабораторных эксперимента были проведены в 1946 году (теоретические работы велись как в США, так и в других странах еще с начала XX века). 13 ноября того же года шесть фунтов сухого льда распылили с самолета над облаком, плывшим вдоль склонов горы Грейлок в Восточном Массачусетсе. Облако просыпалось снегом. Так был сделан первый шаг в области активного воздействия на атмосферные процессы.

От Чернобыля до Венеции

«Первые практические работы по воздействию на погоду начались в СССР еще в 1960-х, — рассказывает директор Автономного некоммерческого объединения (АНО) «Агентство атмосферных технологий» Виктор Петрович Корнеев, — и так исторически сложилось, что наиболее активно у нас развивались технологии искусственного уменьшения осадков. Еще в первой половине 1980-х годов при Мосгорисполкоме создали экспериментальную производственную лабораторию, которой, в частности, было поручено добиться уменьшения количества выпадающего над столицей снега, — руководители города хотели сэкономить на уборке и вывозе. Кроме того, в дни парадов и демонстраций 1, 9 мая и 7 ноября организовывались работы по улучшению погодных условий. Для этого нужно было сделать так, чтобы ‘предназначенные' Москве облака пролились дождем где-то за пределами кольцевой автодороги».

Особым этапом стала ликвидация последствий аварии на Чернобыльской АЭС. Тогда была поставлена задача не допустить смыва в Днепр и Припять радиоактивной пыли, укрывающей почву в зоне катастрофы. При помощи специальных реагентов пыль удалось связать, предохраняя ее от развеивания ветром. Но потоки дождя представляли серьезную опасность. На борьбу с дождевыми облаками были отправлены транспортные самолеты Ан-12 и даже дальние бомбардировщики Ту-95, вылетавшие к Чернобылю с аэродрома Чкаловский.

В те времена строились большие планы. Например, прорабатывался проект восстановления водозапасов Аральского моря за счет увеличения уровня осадков в горах, откуда берут начало питавшие умирающее море реки Сырдарья и Амударья. Но с распадом СССР научно-исследовательские работы в этой области резко сократились. Правда, как выяснилось, российские технологии оказались весьма интересны некоторым зарубежным партнерам. В 1990-х работы по увеличению осадков проводились в Сирии, а уже в последнее десятилетие — в Иране. Наши эксперты также участвовали в проекте рассеивания туманов на ключевых участках автострады Венеция-Триест (Италия) и передавали опыт китайским коллегам накануне пекинской Олимпиады-2008.

Бороться с облаками и туманами периодически приходится и в России. В 1995—1997 годах возможностью увеличить количество осадков заинтересовалось правительство Якутии. Коротким, но жарким сибирским летом эта республика испытывала недостаток влаги на пастбищах, что создавало проблемы местным животноводам. Как рассказывает В.П. Корнеев, прибывших в Якутию московских специалистов встречали представитель районной власти, сотрудник Института проблем Севера и местный шаман, весьма глубокомысленно изложивший собственную точку зрения на круговорот воды в природе. Однако наиболее известным и самым востребованным направлением работы АНО «Атмосферные технологии» и их коллег из Центральной аэрологической обсерватории по‑прежнему остается то, что в народе называют «разгоном облаков» над крупными мегаполисами, и прежде всего над Москвой.

Воспитание холодом

В основе почти всех способов воздействия на гидрометеорологические процессы лежит использование неустойчивого состояния облачной атмосферы. Прежде всего речь идет о фазовой неустойчивости облачной воды — это, как уже говорилось, присутствие в облаках, находящихся выше нулевой изотермы (так называют высоту, где атмосфера «переходит» через температуру в 0°С), мелких капелек влаги, которая продолжает оставаться жидкостью, несмотря на отрицательную температуру (до -40°С) окружающего воздуха. Чтобы вызвать осадки, требуется заставить эту воду кристаллизоваться.

Сделать это можно двумя способами: либо резко охладить облако, принудив капельки переохлажденной влаги к самопроизвольной кристаллизации под действием резкого охлаждения (для этого применяются хладагенты), либо внести в него центры кристаллизации.

Самыми популярными хладагентами уже многие десятилетия остаются сухой лед, с которым экспериментировал еще Винсент Шеффер, и жидкий азот (N2). Температура испарения для твердого углекислого газа составляет -78°С, а для жидкого азота -169°С. При всех своих плюсах хладагенты имеют ряд недостатков, поэтому иногда применяется реагент, имеющий иной механизм действия, — йодистое серебро (AgJ). Кристаллы этого вещества практически изоморфны кристаллам льда и прекрасно выполняют функцию центров кристаллизации для воды и пара. Этот эффект как раз и был открыт Бернардом Воннегутом, так что йодистое серебро можно считать отдаленным прототипом «льда-девять» из романа «Колыбель для кошки».

Как только в переохлажденном облаке появляются кристаллы, они тут же «съедают» окружающий пар; давление вокруг поверхности кристалла падает, что заставляет испаряться жидкую влагу в облаке; пар снова поглощается растущим кристаллом и т. д. Тяжелеющие кристаллы силой притяжения Земли увлекаются вниз. Этим методом возможно также предотвратить формирование больших капель переохлажденной воды, которые рано или поздно способны превратиться в крупный град. Кроме того, применение реагентов, формирующих кристаллы из переохлажденной жидкости, может не только вызвать осадки, но и… задержать их. Если произвести «перезасев» облака реагентами, то из-за возникновения слишком большой концентрации ядер кристаллизации осадкообразование будет замедлено. Так что у «специалистов по хорошей погоде» всегда есть выбор: заставить облако пролиться дождем, до того как ветер погонит его над защищаемой территорией, или, напротив, «перезасеять» его, чтобы дождь прошел уже после того, как туча уйдет прочь. Как правило, второй метод применяется в отношении фронтальной облачности.

Для каждого из типов реагентов существует своя технология диспергирования, или «засева». Гранулы «сухого льда» размерами от 0,2 до 2 см получают непосредственно на борту самолета путем дробления промышленных брикетов. Эту ледяную крошку рассеивают над облаками с помощью бункерных или шнековых устройств.

Для кристаллизации облачной воды жидким азотом применяются жидкоазотные самолетные генераторы мелкодисперсных частиц льда ГМЧЛ-А. Под давлением жидкий азот подается в установленный за бортом самолета распылитель и выводится в атмосферу, создавая там «факел» глубоко охлажденного воздуха с температурой -90°С. Попадающая в него вода мгновенно кристаллизуется.

Для засева облачности аэрозолем йодистого серебра используются пиропатроны, которые отстреливаются специальными автоматическими устройствами.

Цементированное небо

Еще в 1950-х годах, на заре советских экспериментов по активному воздействию на атмосферные процессы, перед исследователями встала проблема. Спустя лишь несколько минут после распыления реагентов экипаж самолета уже затруднялся опознать обработанное облако среди множества других похожих. А без этого было нелегко отследить эффективность работ и не допустить повторного засева. Решение нашлось в одной из многочисленных в те времена керосинных лавок. Там была куплена синька — порошок, широко использовавшийся хозяйками для легкого подкрашивания постельного белья при кипячении и стирке. Предполагалось, что если вместе с реагентами распылить над облаком синьку, то на нем появится голубоватое пятно, которое сыграет роль метки. Однако когда дело дошло до практических опытов, выяснилось, что облака, на которые высыпали синьку, через некоторое время просто исчезали, диссипировались. Возникшее поначалу разочарование вскоре сменилось радостью открытия. Ведь, как оказалось, был найден новый способ воздействия на атмосферу — динамический.

В основном он применяется в борьбе с кучево-дождевыми облаками вертикального развития (конвективными облаками). Эти тучи, растущие вверх высокими «башнями», можно разрушать с помощью той же самой энергии атмосферной неустойчивости, которой обусловлено их возникновение. Попросту говоря, восходящему потоку воздуха, в результате которого растет конвективное облако, надо противопоставить встречное движение, которому по силам это облако разрушить. Такое движение можно создать, сбросив грубодисперсный порошковый реагент со свойствами адсорбента. Это может быть, например, соль или, что чаще всего применяется в отечественной практике, цемент. Набухая от влаги, тяжелый порошок пробьет облако, увлекая вслед за собой капельки воды. Распыление цемента применяется не только в борьбе с конвективными облаками, но и для воздействия на так называемые теплые облака, находящиеся ниже нулевой изотермы. Против них кристаллизующие реагенты бессильны — даже имеющий самый высокий температурный порог активности жидкий азот может работать при температуре облачной среды не выше -0,5°С.

Применение цементного порошка в качестве реагента вызывает обеспокоенные вопросы у широкой публики — не надо ли нам всем надевать респираторы, когда на праздники делают хорошую погоду? «Для органов дыхания распыление цемента не несет никакой опасности, так как после обработки облаков концентрация частиц порошка в воздухе, и так перенасыщенном аэрозолями, ничтожна — всего 1−2 частицы на м3», — успокаивает нас В.П. Корнеев. И все же признать этот способ на 100% безопасным нельзя. Дело в том, что порошковый реагент сбрасывают с самолета в виде картонных и пенопластовых контейнеров размером 26 х 26 х 38 см и массой 25−30 кг. Контейнер предусматривает автоматическое принудительное раскрытие, после чего распадается на фрагменты, безопасные для людей и строений. Однако 12 июня 2008 года, когда по случаю Дня России проводились мероприятия по обеспечению солнечной погоды в Москве, крышу частного дома в Нарофоминском районе Московской области пробил нераскрывшийся контейнер с цементом. К счастью, никто не погиб, однако всем пришлось лишний раз убедиться, что безотказной техники не бывает.

Статья «» опубликована в журнале «Популярная механика» (№5, Май 2009).