Космические возможности: как человеку освоить Солнечную систему

Куда и зачем мы можем полететь еще, что это даст нам в практическом плане и всегда ли в качестве приоритетной задачи нужно выдвигать пилотируемые экспедиции. В принципе перечень космических объектов, представляющих интерес для землян, легко себе представить.
Космические возможности: как человеку освоить Солнечную систему
Unsplash

В первую очередь надо продолжать летать туда, куда уже слетали, но так ничего толком и не узнали. Кстати, сегодня для освоения Луны есть все технические предпосылки и нет препятствий – кроме финансовых. Луна близко, но мы слабо себе представляем, что полезное могли бы там найти. Да, уже известно, что на нашем спутнике есть водяной лед, и это хорошо для организации в будущем лунных баз. Там есть гелий-3 – вещество, которого почти нет на Земле. Правда, потребность в нем будет определяться прогрессом в области термоядерной энергетики. Но мы совершенно не знаем, что происходит в недрах Луны глубже трех метров. А ведь известно, что там существуют условия для выживания земных микроорганизмов. И кто знает – возможно, наше ночное светило прячет в недрах свою собственную оригинальную жизнь. Это предстоит выяснить.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Луна

Луна на всякий случай

Кроме чисто научных задач освоение Луны могло бы принести человечеству и практическую пользу. Мы могли бы создать там резервное хранилище важной для человечества информации. Сейчас на Шпицбергене есть хранилище семян, где на глубине 130 м сберегается от катаклизмов семенной фонд основных сельскохозяйственных культур. Но каким бы глубоким ни был бункер, все его содержимое может погибнуть в случае глобальной катастрофы, например, столкновения Земли с астероидом. Если мы создадим еще одно такое хранилище на Луне, вероятность не утратить семенной фонд повысится.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Любая угроза из космоса, которая затронет Землю, наверняка обойдет Луну. Мощная вспышка на Солнце может стереть все компьютерные данные со всех твердых носителей, и человечество потеряет бездну информации, которую потом чрезвычайно трудно будет восстановить. А если создать несколько резервных хранилищ данных на Луне, хоть одно наверняка уцелеет: Луна, в отличие от Земли, вращается вокруг своей оси медленно, и на противоположной от Солнца стороне эффекты вспышки не будут ощущаться.

Марс — ближайшая после Луны цель для освоения землянами. И, хотя туда пока не ступала нога человека, работающие десятилетиями на Красной планете беспилотные зонды собрали огромное количество научной информации.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

В пекло на дирижабле

Следующим по важности объектом для освоения, конечно, является Марс. Полеты туда намного дороже, чем к Луне, и обживание несколько сложнее, но в целом условия похожи на лунные. Поверхность Венеры из-за высокой температуры и колоссального давления атмосферы плохо доступна для исследований, однако уже давно существует проработанный проект изучения этой планеты с помощью аэростатов. Аэростаты могли бы размещаться в таких слоях венерианской атмосферы, где и температура, и давление вполне приемлемы для работы исследовательских станций. Меркурий – планета температурных контрастов. На полюсах там царит лютый холод (–200°), в экваториальной области в зависимости от времени меркурианских суток (58,5 земного дня) колебания температуры составляют от +350 до –150°. Меркурий, безусловно, интересен ученым, но создание баз на этой планете потребует зарыться в грунт на глубину 1–2 м, где уже не будет резких перепадов страшной жары и лютого холода, а температура окажется в приемлемых для человека рамках.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Поселение человека на спутнике Сатурна
Спутники Сатурна
James Vaughan - Asteroid Exploration and Mining
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Где спрятаться от радиации

Большой интерес представляют спутники планет-гигантов, где есть океаны. Такие, как луна Юпитера Европа и луны Сатурна Титан и Энцелад. Можно сказать, что Титан – божественный подарок землянам. Атмосфера там почти как у Земли – азотная, но гораздо плотнее. И это единственное небесное тело, кроме Земли, где можно находиться продолжительное время, не опасаясь радиации. На Луне и Марсе, где практически нет атмосфер, радиация убьет любое незащищенное живое существо года за полтора. Радиационные пояса Юпитера обладают убийственной силой, и на Ио, Европе, Ганимеде и Каллисто человек проживет максимум пару суток.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Сатурн тоже обладает мощными радиационными поясами, но, находясь на Титане, беспокоиться не о чем – атмосфера надежно защищает от вредоносных лучей. Поскольку сила гравитации на спутнике в семь раз меньше земной, то давление плотной атмосферы лишь в 1,45 раза выше, чем земной. Сочетание низкой силы тяжести с высокой плотностью газовой среды делало бы полеты в небе Титана малоэнергозатратными, там каждый мог бы спокойно передвигаться на педальном мускулолете (на Земле поднять такую штуку в воздух удается только тренированным спортсменам). И еще на Титане есть озера, правда, наполнены они не водой, а смесью жидких углеводородов (при освоении Титана они бы пригодились). Жидкая вода на Титане, очевидно, есть только в недрах. На поверхности она неминуемо превратилась бы в лед, поскольку там очень холодно: средняя температура –179°. Однако согреться на Титане гораздо проще, чем обеспечить прохладу на Венере.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Астероид на фоне Млечного пути
Pixabay
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Железо, но не золото

Еще одно важное направление исследований – астероиды. Они угрожают Земле, и потому мы должны точнее узнать их орбиты, определить их состав, изучить как потенциальных врагов. Но главное, что астероиды – самый доступный в Солнечной системе строительный материал для баз, станций и т. д. Подъем килограмма вещества с Земли на орбиту стоит десятки тысяч долларов. Взять вещество с астероида не стоит ничего, так как сила его гравитации пренебрежимо мала. Астероиды очень разнообразны. Есть металлические, содержащие железо и никель. А железо – наш самый ходовой конструкционный материал. Есть астероиды из плотных минералов типа скальной породы. Есть и те, что состоят из рыхлого «первородного» материала – исходного вещества для формирования планет. Не исключено, что существуют астероиды, содержащие большое количество цветных металлов, а также золота и платины. Их «опасность» в том, что, если их однажды включат в экономический оборот, все эти металлы на Земле обесценятся, что может сказаться на судьбе многих государств.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Посадка на астероид
Астероиды
Getty Images

Человек и сомнения

Основные направления изучения небесных тел Солнечной системы понятны. Остается главный вопрос. Должны ли мы стремиться к тому, чтобы во все эти космические миры обязательно ступила нога человека? Многие ученые моего поколения, детство и юность которых проходили в атмосфере космической романтики во времена полета Гагарина и американской высадки на Луну, обеими руками за пилотируемую космонавтику. Но, если говорить о научных результатах, которые хочется получить с минимальными затратами, надо признать: отправка человека в космос в десятки раз дороже запуска робота, притом что научного смысла в этом нет. Присутствие человека на околоземной орбите или на Луне не принесло ни одного значимого открытия, а космические аппараты типа телескопа Hubble или марсианских роверов дали бездну научной информации. Да, американские астронавты привезли с Луны образцы грунта, но это было по силам и автомату, что было доказано с помощью советской станции «Луна-24».

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Технологически человечество уже достаточно близко подошло к полету на Марс. В течение ближайших 5–10 лет должны появиться корабли и сверхтяжелые ракеты-носители, пригодные для выполнения этой миссии. Но есть проблемы другого рода. До сих пор не ясно, как защитить человеческий организм от радиации в течение долгого полета за пределы земной атмосферы. Способен ли человек психологически вынести дальнее космическое путешествие без всякой надежды на помощь в экстренной ситуации? Ведь даже находящийся долгие месяцы на борту МКС космонавт знает, что до Земли всего 400 км и в случае чего оттуда придет помощь или можно будет экстренно эвакуироваться в капсуле. На полпути от Земли до Марса ни на что такое надеяться не приходится.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Добыча ископаемых на астероиде
Роботы в космосе
Walter Myers

Заповедники чужой жизни?

Есть и еще один важный аргумент против пилотируемых полетов: возможность заражения космических миров земными живыми организмами. До сих пор нигде в Солнечной системе жизнь не обнаружена, но это не значит, что она не может быть найдена в недрах планет и спутников в будущем. Например, наличие метана в атмосфере Марса может объясняться жизнедеятельностью микроорганизмов в грунте планеты. Если бы автохтонную марсианскую жизнь удалось найти, это была бы настоящая революция в биологии. Но надо ухитриться не заразить недра Марса земными бактериями. Иначе мы просто не сможем понять, имеем ли мы дело с местной жизнью, так похожей на нашу, или с потомками бактерий, привезенных с Земли. А поскольку американский исследовательский аппарат InSight уже пытался исследовать грунт Марса на несколько метров в глубину, риск заражения стал реальным фактором. Но космические аппараты, садящиеся на Марс или Луну, сейчас в обязательном порядке дезинфицируют. Человека же дезинфицировать невозможно. Через вентиляцию скафандра космонавт обязательно «обогатит» планету обитающей внутри организма микрофлорой. Так стоит ли спешить с пилотируемыми полетами?

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Поверхность планеты

С другой стороны, пилотируемая космонавтика, не давая ничего особенного для науки, много значит для государственного престижа. Поиск бактерий в недрах Марса в глазах большинства – это куда менее амбициозная задача, чем отправка героя на «пыльные тропинки далеких планет». И в этом смысле пилотируемая космонавтика может играть позитивную роль как средство повысить интерес властей и крупного бизнеса к исследованию космоса вообще, в том числе к проектам, интересным науке.

Автор: Владимир Георгиевич Сурдин – астроном, к. ф.-м. н., доцент физического факультета МГУ, старший научный сотрудник Государственного астрономического института имени П. К. Штернберга, ведущий научный сотрудник Института проблем передачи информации РАН

MaxusR
MaxusR 04 Августа 2019, 16:57
Да не, та же фигня, что с нефтью. Слишком много нефти добывают - стоимость падает, производителям не выгодно. Начинают искуственно занижать добычу, цены растут, все довольны (ну как все... кому надо, те довольны). И так во всём. Контрабандные продукты (хорошего качества) нам проще под трактор пустить, чем честно разделить. Будет падать на планету астероид - скажут слишком дорого защиту от него строить, проще сдохнуть, зато бесплатно.
Павел Ситников
Павел Ситников 04 Августа 2019, 16:06
Вот и наступят в будущем космические войны за ресурсы Солнечной системы.Тот кто находится на пике прогресса сможет захватит огромную долю ресурсов.
Gofman Vladislav
Gofman Vladislav 04 Августа 2019, 15:50
От эй вы там на верху я приглашения не жду,до гимна белому человеку,который не живёт в мире с природой,а приспосабливается её к себе и вечно завоевывает.Но океан и недра Земли не подвластны ,а микробы не дрессируются,хотя если вспомнить причину Рождественских каникул это возможно.
MaxusR
MaxusR 04 Августа 2019, 15:46
>>> а также золота и платины. Их «опасность» в том, что, если их однажды включат в экономический оборот, все эти металлы на Земле обесценятся, что может сказаться на судьбе многих государств. Вот пока не откажемся от этой примитивной системы "экономического оборота редких предметов и ресурсов", так и будем топтаться в борьбе за крошки. А в сущности чем отличаются золотой и железный астероиды? Да ничем. Просто ресурсы.