Этот изотоп планируется добывать на Луне для нужд термоядерной энергетики. Однако это дело далекого будущего. Тем не менее гелий-3 чрезвычайно востребован уже сегодня — в частности, в медицине.

Общее количество гелия-3 в атмосфере Земли оценивается всего лишь в 35 000 т. Его поступление из мантии в атмосферу (через вулканы и разломы в коре) составляет несколько килограммов в год. В лунном реголите гелий-3 постепенно накапливался в течение сотен миллионов лет облучения солнечным ветром. В результате тонна лунного грунта содержит 0,01 г гелия-3 и 28 г гелия-4; это изотопное соотношение (~0,04%) значительно выше, чем в земной атмосфере.

Амбициозные планы добычи гелия-3 на Луне, на полном серьезе рассматриваемые не только космическими лидерами (Россия и США), но и новичками (Китай и Индия), связаны с надеждами, которые возлагают на этот изотоп энергетики. Ядерная реакция 3Не+D→4Не+p имеет ряд преимуществ по сравнению с наиболее достижимой в земных условиях дейтериево-тритиевой реакцией T+D→4Не+n.

К этим преимуществам относится в десятки раз более низкий поток нейтронов из зоны реакции, что резко уменьшает наведенную радиоактивность и деградацию конструкционных материалов реактора. Кроме того, один из продуктов реакции — протоны — в отличие от нейтронов, легко улавливаются и могут быть использованы для дополнительной генерации электроэнергии. При этом и гелий-3, и дейтерий неактивны, их хранение не требует особых мер предосторожности, а при аварии реактора с разгерметизацией активной зоны радиоактивность выброса близка к нулю. Есть у гелий-дейтериевой реакции и серьезный недостаток — значительно более высокий температурный порог (для начала реакции требуется температура порядка миллиарда градусов).

Хотя все это дело будущего, гелий-3 чрезвычайно востребован и сейчас. Правда, не для энергетики, а для ядерной физики, криогенной промышленности и медицины.

Магнитно-резонансная томография

С момента своего появления в медицине магнитно-резонансная томография (МРТ) стала одним из основных диагностических методов, позволяющих без всякого вреда заглянуть «внутрь» различных органов.

Примерно 70% массы человеческого тела приходится на водород, ядро которого, протон, обладает определенным спином и связанным с ним магнитным моментом. Если поместить протон во внешнее постоянное магнитное поле, спин и магнитный момент ориентируются либо вдоль поля, либо навстречу, причем энергия протона в первом случае будет меньше, чем во втором. Протон можно перевести из первого состояния во второе, передав ему строго определенную энергию, равную разнице между этими энергетическими уровнями, — например, облучая его квантами электромагнитного поля с определенной частотой.

Именно так и устроен МР-томограф, только обнаруживает он не отдельные протоны. Если поместить образец, содержащий большое количество протонов в мощное магнитное поле, то количества протонов с магнитным моментом, направленным вдоль и навстречу полю, окажутся примерно равными. Если начать облучать этот образец электромагнитным излучением строго определенной частоты, все протоны с магнитным моментом (и спином) «вдоль поля» перевернутся, заняв положение «навстречу полю». При этом происходит резонансное поглощение энергии, а во время процесса возвращения к исходному состоянию, называемому релаксацией, — переизлучение полученной энергии, которое можно обнаружить. Это явление и называется ядерным магнитным резонансом, ЯМР. Средняя поляризация вещества, от которой зависит полезный сигнал при ЯМР, прямо пропорциональна напряженности внешнего магнитного поля. Чтобы получить сигнал, который можно обнаружить и отделить от шумов, требуется сверхпроводящий магнит — только ему под силу создать магнитное поле с индукцией порядка 1−3 Тл.

Магнитный газ

МР-томограф «видит» скопления протонов, поэтому отлично подходит для изучения и диагностики мягких тканей и органов, содержащих большие количества водорода (в основном в виде воды), а также дает возможность различать магнитные свойства молекул. Таким способом можно, скажем, отличить артериальную кровь, содержащую гемоглобин (основной переносчик кислорода в крови), от венозной, содержащей парамагнитный дезоксигемоглобин, — именно на этом основана фМРТ (функциональная МРТ), позволяющая отслеживать активность нейронов головного мозга.

Но, увы, такая замечательная методика, как МРТ, совершенно не приспособлена для изучения заполненных воздухом легких (даже если наполнить их водородом, сигнал от газообразной среды с низкой плотностью будет слишком слаб на фоне шумов). Да и мягкие ткани легких не слишком хорошо видны с помощью МРТ, поскольку они «пористые» и содержат мало водорода.

Можно ли обойти это ограничение? Можно, если использовать «намагниченный» газ — в этом случае средняя поляризация будет определяться не внешним полем, потому что все (или почти все) магнитные моменты будут ориентированы в одном направлении. И это вовсе не фантастика: в 1966 году французский физик Альфред Кастлер получил Нобелевскую премию с формулировкой «За открытие и разработку оптических методов исследования резонансов Герца в атомах». Он занимался вопросами оптической поляризации спиновых систем — то есть как раз «намагничиванием» газов (в частности, гелия-3) с помощью оптической накачки при резонансном поглощении фотонов с круговой поляризацией.

Дышите глубже

Пионерами использования поляризованных газов в медицине стала группа исследователей из Принстона и Нью-йоркского университета в Стони-Брук. В 1994 году ученые опубликовали в журнале Nature статью, в которой впервые было продемонстрировано изображение легких мыши, полученное с помощью МРТ.

Правда, МРТ не совсем стандартной — методика была основана на отклике не ядер водорода (протонов), а ядер ксенона-129. К тому же газ был не совсем обычным, а гиперполяризованным, то есть заранее «намагниченным». Так родился новый метод диагностики, который вскоре начали применять и в человеческой медицине.

Гиперполяризованный газ (обычно в смеси с кислородом) попадает в самые дальние закоулки легких, что дает возможность получить МРТ-снимок с разрешением на порядок выше лучших рентгеновских снимков. Можно даже построить детальную карту парциального давления кислорода в каждом участке легких и потом сделать заключение о качестве кровяного потока и диффузии кислорода в капиллярах. Эта методика позволяет изучить характер вентиляции легких у астматиков и контролировать процесс дыхания критических пациентов на уровне альвеол.

Достоинства МРТ с использованием гиперполяризованных газов этим не ограничиваются. Поскольку газ гиперполяризован, уровень полезного сигнала оказывается значительно выше (примерно в 10000 раз). Это означает, что отпадает необходимость в сверхсильных магнитных полях, и приводит к конструкции так называемых слабопольных МР-томографов — они дешевле, мобильнее и гораздо просторнее. В таких установках используются электромагниты, создающие поле порядка 0,005 Тл, что в сотни раз слабее стандартных МР-томографов.

Маленькое препятствие

Хотя первые эксперименты в этой области проводились с гиперполяризованным ксеноном-129, вскоре его заменил гелий-3. Он безвреден, позволяет получать более четкие изображения, чем ксенон-129, имеет в три раза больший магнитный момент, что обусловливает более сильный сигнал в ЯМР. Кроме того, обогащение ксенона-129 из-за близости массы с другими изотопами ксенона — дорогой процесс, да и достижимая поляризация газа существенно ниже, чем у гелия-3. К тому же ксенон-129 обладает седативным эффектом.

Но если слабопольные томографы просты и дешевы, почему же метод МРТ с гиперполяризованным гелием не используется сейчас в каждой поликлинике? Есть одно препятствие. Но зато какое!

Наследие холодной войны

Единственный способ получения гелия-3 — распад трития. Большая часть запасов 3He обязана своим происхождением распаду трития, произведенного во время ядерной гонки вооружений в период холодной войны. В США к 2003 году было накоплено примерно 260 000 л «сырого» (неочищенного) гелия-3, а к 2010 году осталось только 12000 л незадействованного газа. В связи с возрастанием спроса на этот дефицитный газ в 2007 году даже было восстановлено производство ограниченных количеств трития, и до 2015 года планируется дополнительно получать по 8000 л гелия-3 ежегодно. При этом годовой спрос на него уже сейчас составляет не менее 40 000 л (из них только 5% используется в медицине). В апреле 2010 года американский Комитет по науке и технологии США сделал вывод, что нехватка гелия-3 приведет к реальным негативным последствиям для многих областей. Даже ученые, работающие в ядерной отрасли США, испытывают трудности с приобретением гелия-3 из запасов государства.

Аукционная цена гелия-3 колеблется в районе $2000 за литр, причем никаких тенденций к снижению не наблюдается. Дефицит этого газа обусловлен тем, что основная часть гелия-3 используется для изготовления нейтронных детекторов, которые применяются в устройствах для обнаружения ядерных материалов. Такие детекторы регистрируют нейтроны по реакции (n, p) — захвату нейтрона и испусканию протона. А чтобы засечь попытки завоза ядерных материалов, таких детекторов требуется очень много — сотни тысяч штук. Именно по этой причине гелий-3 стал фантастически дорог и малодоступен для массовой медицины.

Впрочем, надежды есть. Правда, возлагаются они не на лунный гелий-3 (его добыча остается отдаленной перспективой), а на тритий, образующийся в тяжеловодных реакторах типа CANDU, которые эксплуатируются в Канаде, Аргентине, Румынии, Китае и Южной Корее.

Статья «» опубликована в журнале «Популярная механика» (№3, Март 2012).