Оригинальная схема эксперимента, предложенная американскими физиками, позволит изучить гравитационное взаимодействие с высочайшей точностью и на небольших — порядка нанометров — дистанциях. Возможно, при этих условиях проявятся какие-то новые экзотические свойства гравитации.
Редакция ПМ

Под действием лазерного луча (красный) стеклянный шарик диаметром ок. 300 нм должен «левитировать», демонстрируя высокую чувствительность к воздействию гравитации. Внесение золотого стержня на расстояние порядка нескольких нанометров от шарика позволит замерить ее действие на небольших дистанциях
Для захвата частицы «оптический пинцет» использует сфокусированный лазерный пучок. Градиент интенсивности излучения затягивает частицу в область перетяжки пучка, тогда как давление света выталкивает ее по направлению оптической оси. Когда градиентная сила доминирует — частица поймана в области точки фокуса; в противном случае частица движется вдоль оптической оси

Из четырех фундаментальных взаимодействий гравитация — самое понятное и доступное нам. Но по странной иронии, для физиков она стала как раз самой трудной для точного научного описания и включения в единую картину. Для объектов космических масштабов, разделенных космическими же расстояниями, влияние ее точно измерено, рассчитано и предсказуемо. Но вот как гравитация ведет себя на микроскопическом уровне, порядка миллионных долей метра, где доминируют обычно электромагнитные силы, известно крайне мало. И, как водится, недостаток знаний стимулирует самые горячие дискуссии и самые разные гипотезы.

Физик из американского Национального института стандартов и технологий (NIST) Эндрю Джерачи (Andrew Geraci) говорит: «Существует масса теорий, предлагающих собственные взгляды на то, как проявляет себя гравитация на таких масштабах. Однако проверить их нелегко, поскольку чрезвычайно сложно сблизить предметы на нужное расстояние и при этом с необходимой точностью измерять их относительное смещение». Именно для этого Джерачи и его команда предложили поставить оригинальный эксперимент.

Для начала следует взять крохотную — порядка 300 нм в диаметре — стеклянную сферу и поместить ее под воздействие пучка лазерного излучения с длиной волны 1,5 мкм. Сфера окажется как бы подвешенной в пределах лазерного луча, что позволяет свести практически к нулю влияние трения. Сфера сможет двигаться вдоль луча, но если диаметр его будет почти совпадать с ее диаметром, не будет его покидать.

Такая схема, известная под названием «оптического захвата» (optical trapping), используется для ряда нанотехнологических задач — скажем, для так называемого «оптического пинцета». Градиент интенсивности излучения затягивает крохотную частицу и удерживает ее почти так, как вертящиеся ураганы увлекают за собой предметы покрупнее.

Движения сферы, не стесненной трением, будут высоко чувствительны к воздействию внешних сил — включая гравитационное влияние какого-нибудь достаточно тяжелого объекта, который может появиться поблизости. Это может быть золотой стержень, который ученые предлагают приблизить к сфере на мельчайшее расстояние — порядка нескольких нанометров, в тысячи раз меньше диаметра человеческого волоса. Под притяжением стержня сфера слегка изменит свое положение, что и можно измерить другим лазерным лучом (длиной волны 1 мкм). Наблюдения за эффектами гравитации будут проведены с такой точностью, с какой этого еще никто и никогда не делал. В сотни тысяч, а то и миллионы раз чувствительнее, чем уже поставленные эксперименты.

Впрочем, продумать схему эксперимента и воплотить ее в реальность — две разные вещи. По мнению авторов, постановка опыта может занять еще несколько лет, хотя бы потому, что потребует разрешения ряда других сложностей. Речь, прежде всего, о том же трении. Конечно, подвешенная в пучке лазера частица испытывает куда меньшее воздействие трения, чем частицы в предыдущих экспериментах, когда их помещали на кончик тончайшей иглы или пружинки. Но и здесь, при такой чувствительности эксперимента, трение дает о себе знать — это и соударения с частицами окружающего газа, и с излучением самого лазера. Все эти влияния экспериментаторам придется учитывать.

Читайте также о том, почему для высокоточных измерений гравитационного поля Земли ученые стали сбрасывать с башни одного университета дорогостоящие приборы: «Уронить, чтобы измерить».

По пресс-релизу NIST

Понравилась статья?
Самые интересные новости из мира науки: свежие открытия, фотографии и невероятные факты у вас на почте.
Спасибо.
Мы отправили на ваш email письмо с подтверждением.