Если средневековый король боялся стать жертвой «игры престолов», он заводил себе придворного дегустатора. Можно представить, с какой опаской обнюхивал тот подозрительное блюдо! Сейчас эту рискованную работу готовы взять на себя электронные носы и языки — приборы, способные почуять самый слабый запах яда, взрывчатки или болезни.
Как работает «электронный нос»: подробно о сложном
В 2014 году европейский консорциум PHOTOSENS представил прототип электронного носа, изготовленного методом наноимпринтной литографии. Эффект поверхностно-усиленного рамановского рассеяния позволяет получить точные спектральные «отпечатки» присутствующих в смеси веществ, которые оседают на специально приготовленном шероховатом слое золота.

Восприятие человеком запаха и вкуса устроено даже сложнее, чем зрение или слух. Причиной тому — великое разнообразие рецепторных клеток: в носу их число достигает 50 млн, на языке — 400−500 тысяч, и у каждой свой набор чувствительных рецепторов. При контакте с определенными молекулами некоторые из них активируются, возбуждая рецептор. Этот сигнал поступает на «вышестоящие» нейроны, каждый из которых связан сразу со множеством рецепторных клеток. Восприятие создает специфический паттерн, шаблон активации нейронов, который интерпретируется головным мозгом.

Идея имитировать эти принципы возникла десятилетия назад. Требовалось лишь создать «электронный нос» — набор сенсоров, которые, взаимодействуя с газовой смесью, будут реагировать на разные пахучие компоненты (одоранты) в ее составе. Срабатывая, сенсоры могут создавать «паттерн» аромата (фингерпринт), который можно сравнить с набором заранее заготовленных стандартов. «Электронный язык» должен действовать примерно так же, разве что образец в данном случае будет жидким, а вещества — не обязательно пахучими.

«Сердце» носа

Создатели таких систем идут двумя принципиально разными путями. Первые добиваются высокой специфичности каждого датчика в массиве, так, чтобы каждый срабатывал на свое — и только свое — соединение. Вторые, апеллируя к принципам работы мозга, используют не столь «разборчивые» датчики, реагирующие на группы похожих молекул. Подразумевается, что если каждый датчик будет реагировать немного по‑разному, то их совместное срабатывание сформирует уникальный фингерпринт. Его уже можно сравнить с набором опорных спектров и примерно оценить содержание веществ.

Но в любом случае ключевым элементом электронных носов и языков оказываются сенсоры. Их задача — перевести сигнал, возникший в виде химических реакций, в более удобную для регистрации и интерпретации форму: электрическую, химическую, магнитную, температурную… Для этого применяется восемь основных типов датчиков — кондуктометрические, амперо- и вольтметрические, потенциометрические, импедометрические, пьезоэлектрические и оптические (колори- и флуориметрические), — основанные на принципах хроматографии и/или масс-спектрометрии. Ведутся разработка и внедрение биосенсоров на базе органических полимеров и даже целых клеток.

В одном устройстве часто комбинируют элементы, работающие на разных принципах, обогащая его возможности — и затрудняя интерпретацию полученного сигнала. Впрочем, и без этого усложнения анализ данных, полученных массивом датчиков «электронного носа», остается непростой задачей. Последней тенденцией в этой области стало использование искусственных нейронных сетей. Они особенно хороши, если результат конкретного анализа непредсказуем или нет точных стандартов для сравнения данных. В процессе обучения на тестовых данных и дегустации чего-то незнакомого связи между отдельными элементами искусственной нейронной сети будут усиливаться или ослабевать, и «мозг» прибора научится распознавать новый запах. «Электронные носы» Peres распознают более сотни летучих веществ в пищевых продуктах, определяя степень их свежести и чистоты. Литовские разработчики, представившие концепт в 2014 году, уже вывели его на рынок под названием FOOD Sniffer.

Нос в молоке

Мы не напрасно начали с истории о дегустации. Сегодня проверка безопасности и качества еды становится самой «горячей» областью внедрения этих приборов. Действительно, одно дело попробовать кусок королевской булочки, другое — проверить, испорчена ли партия говядины, содержит ли вредные примеси вино, нет ли патогенных бактерий и грибов в пшенице. Применяющиеся для этой цели химические и биохимические, микробиологические и иммунологические методы достаточно точны, но недешевы и небыстры. Последнее особенно критично в условиях нынешнего бума на свежую еду без консервантов.

Представим молочный завод, производящий непастеризованное — «живое» — молоко. Обычные патогены цельного молока — сальмонеллы и листерии, кишечные палочки и шигеллы, возбудители бруцеллеза и кампилобактериоза. Диагностический бактериальный посев потребует в лучшем случае два дня времени: пожалуй, от непереработанного молока за это время останется мало хорошего. Впрочем, и не молоком единым. При продуманном подборе сенсоров эти электронные носы способны быстро оценивать разные продукты. Тем более что производство становится все дешевле, приближая их выход на массовый рынок. Например, компания Peres уже сейчас предлагает приобрести Food Sniffer по цене меньше $150, декларируя его способность определять испорченность или зараженность продуктов патогенами. Но это явно только начало.

Чем больше и сложнее будут становиться системы сенсоров, тем скорее электронные носы и языки начнут конкурировать даже с профессиональными дегустаторами. В этом есть рациональное зерно: человеческое восприятие субъективно и капризно, так что в некоторых нашумевших экспериментах даже лучшие специалисты, поставленные в неудобную ситуацию, оказывались неспособны отличить красное вино от подкрашенного белого, а клубничный йогурт от шоколадного. Прибор же не станет работать иначе из-за того, что поссорился с женой, не выспался, терпеть не может шпинат или на тарелке лежит не слишком привлекательное блюдо. Фото

Болезненный запах

Обоняние — ценный диагностический инструмент медицины. Можно вспомнить массу сцен из исторических фильмов, в которых врач с опаской принюхивается к ране: не началась ли гангрена? Вообще инфекционные заболевания и новообразования часто ассоциированы с метаболическими изменениями, которые может уловить обоняние. Например, описано выявление рака легких и молочной железы, гипогликемии и астмы с использованием тренированных собак, а также обнаружение туберкулеза обученными крысами («Популярная механика» писала об этих методах в статье о животных-диагностах, № 4'2016. — Прим. ред.).

Заинтересовали запахи болезни и создателей электронных носов. Наверняка многие слышали, что запах ацетона изо рта может свидетельствовать о таких неприятных заболеваниях, как сахарный диабет или тиреотоксикоз. Кроме того, можно регистрировать аммиачные соединения — признак почечной недостаточности. Электронный нос способен обнаружить и инфекционных агентов, причем весьма эффективно и на очень ранних стадиях. Например, для современного иммунотеста нужно в три раза больше белков оболочки вируса гриппа, чем для «обоняющего» биосенсора с использованием антител.

Не обошел стороной метод и онкологическую диагностику. Самым логичным применением в ней электронного носа было бы выявление рака легких. Давно замечено, что при этом онкозаболевании (впрочем, как и при астме, а также муковисцидозе) наблюдается закисление выдыхаемого конденсата. С определением изменения pH справится простейший электронный язык, дав быстрый, хотя и далеко не однозначный результат. Однако путем сравнения образцов конденсата больных и здоровых людей (а также построения моделей этих образцов) ученые уже выявили спектр из 17 летучих веществ, которые служат точными маркерами развития рака легких и поддаются распознаванию с помощью масс-спектрометрии, хроматографии и других методов. Фото

Нос широкого профиля

Однако по‑настоящему разборчивые электронные носы, возможно, будут работать с использованием ДНК. Как отмечают многие разработчики, эти молекулы не отличаются особой селективностью в распознавании, зато ввиду небольших различий в структуре способны по‑разному отвечать на одно и то же соединение. ДНК предлагает огромную комбинаторную сложность и возможность без особых проблем синтезировать «рецепторную» молекулу из любой нужной последовательности нуклеотидов. Рабочий прототип такого прибора уже создан, он использует огромный массив молекул ДНК, связанных с флуоресцентными метками.

Такие совершенные электронные носы и языки могут стать основой для разработки достойных имплантов для замены естественных — или оснащения ими роботов. В конце концов, роботы-повара уже работают на некоторых кухнях. Но для полноценной замены людей следовать рецептам и уметь управляться со сковородой недостаточно, и робоповару понадобится научиться элементарно определять качество ингредиентов по запаху, а готовность блюда — по вкусу. В перспективе развития технологии — модификации и усовершенствования сенсорной части: ее чувствительности, селективности и стабильности. Особо активно в этот процесс вмешиваются углеродные наноматериалы с их многообещающими свойствами — монокристаллическая структура, точно определенные химический состав и пространственное строение, а также уникальные характеристики наносоединений, связанные с поверхностными эффектами. Возможно, именно графеновые и фуллереновые био- и химические сенсоры должны стать следующим шагом в исследовательском и коммерческом применении электронных носов и языков. И, разумеется, гаджеты тоже никто не отменял: китайская студентка уже предложила концепт электронного носа, совмещенного с небольшим принтером. Сканируешь блюдо, прибор ищет в базе картинку, связанную с его запахом, и ароматическими чернилами печатает ее на почтовой открытке. Ну а почему бы и нет?

Нюх на опасность Фото Вдохновившись особенностями нюха служебных собак, ученые Университета Санта-Барбары решили сымитировать работу их носа для детекции взрывчатых веществ и наркотиков. Сплошные плюсы: безопасность под контролем, а выгуливать и кормить не надо. Полученный «пес-на-чипе» представляет собой миниатюрный спектрометр-детектор, дополненный наночастицами, усиливающими сигнал путем связывания молекул-маркеров (благодаря этому прибор способен улавливать вещества в концентрации одной молекулы на миллиард!). Изначально «пес-на-чипе» задумывался как детектор взрывчатых веществ. Но оказалось, что его несложно «донастроить» на наркотики и другие нелегальные вещества. Прототипы устройства уже созданы в нескольких университетах США — примечательно, что размером они едва больше смартфона, а некоторые оснащены Bluetooth, GPS и WiFi-модулями.

Статья «Нос на батарейках» опубликована в журнале «Популярная механика» (№5, Май 2016).