Знаменитый изобретатель Никола Тесла имеет немало заслуг перед наукой и техникой, но только одно изобретение носит его имя. Это резонансный трансформатор, известный также как «катушка Теслы».
Строим трансформатор Теслы на дому
Трансформатор Теслы состоит из первичной и вторичной обмоток, схемы, обеспечивающей питание первичной обмотки на резонансной частоте вторичной, и, опционально, дополнительной емкости на высоковольтном выходе вторичной обмотки. Острие, укрепленное на дополнительной емкости, повышает напряженность электрического поля, облегчая пробой воздуха. Дополнительная емкость снижает рабочую частоту, уменьшая нагрузку на транзисторы, и, по некоторым данным, повышает длину разрядов. В качестве каркаса вторичной обмотки используется кусок канализационной ПВХ-трубы. Вторичная обмотка состоит примерно из 810 витков эмалированного провода диаметром 0,45 мм. Первичная обмотка состоит из восьми витков провода сечением 6 мм2. Схема питания основана на принципе автоколебаний и построена на силовых транзисторах.

Суть изобретения Теслы проста. Если питать трансформатор током с частотой, равной резонансной для его вторичной обмотки, напряжение на выходе возрастает в десятки и даже сотни раз. Фактически оно ограничено электрической прочностью окружающего воздуха (или иной среды) и самого трансформатора, а также потерями на излучение радиоволн. Наиболее известна катушка в области шоу-бизнеса: она способна метать молнии!

Форма и содержание

Трансформатор выглядит весьма необычно — он словно специально сконструирован для шоу-бизнеса. Вместо привычного массивного железного сердечника с толстыми обмотками — длинная полая труба из диэлектрика, на которую провод намотан всего в один слой. Такой странный вид вызван необходимостью обеспечить максимальную электрическую прочность конструкции.

Кроме необычного внешнего вида, трансформатор Теслы имеет еще одну особенность: в нем обязательно есть некая система, создающая в первичной обмотке ток именно на резонансной частоте вторичной. Сам Тесла использовал так называемую искровую схему (SGTC, Spark Gap Tesla Coil). Ее принцип заключается в зарядке конденсатора от источника питания с последующим подключением его к первичной обмотке. Вместе они создают колебательный контур.

Емкость конденсатора и индуктивность обмотки подбираются так, чтобы частота колебаний в этом контуре совпадала с необходимой. Коммутация осуществляется с помощью искрового промежутка: как только напряжение на конденсаторе достигает определенного значения, в промежутке возникает искра, замыкающая контур. Часто можно увидеть утверждения, что «искра содержит полный спектр частот, так что там всегда есть и резонансная, за счет чего и работает трансформатор». Но это не так — без правильного подбора емкости и индуктивности действительно высокого напряжения на выходе не получить.

Решив сделать свой трансформатор Теслы, мы остановились на более прогрессивной схеме — транзисторной. Транзисторные генераторы потенциально позволяют получить любую форму и частоту сигнала в первичной обмотке.

Выбранная нами схема состоит из микросхемы драйвера силовых транзисторов, маленького трансформатора для развязки этого драйвера от питающего напряжения 220 В и полумоста из двух силовых транзисторов и двух пленочных конденсаторов. Трансформатор мотается на кольце из феррита с рабочей частотой не менее 500 кГц, на нем делается три обмотки по 10−15 витков провода. Очень важно подключить транзисторы к обмоткам трансформатора так, чтобы они работали в противофазе: когда один открыт, другой закрыт.

Нужная частота возникает за счет обратной связи со вторичной обмоткой (схема основана на автоколебаниях). Обратная связь может осуществляться двумя способами: с помощью или трансформатора тока из 50−80 витков провода на таком же ферритовом кольце, как и разделительный трансформатор, через которое проходит провод заземления нижней части вторичной обмотки, или… просто кусочка проволоки, которая выполняет роль антенны, улавливающей испускаемые вторичной обмоткой радиоволны.

Мотаем на ус

В качестве каркаса первичной обмотки мы взяли канализационную трубу из ПВХ диаметром 9 см и длиной 50 см. Для намотки используем эмалированный медный провод диаметром 0,45 мм. Каркас и катушку обмоточного провода размещаем на двух параллельных осях. В качестве оси каркаса выступал кусок ПВХ-трубы меньшего диаметра, а роль оси катушки с проводом выполнила завалявшаяся в редакции стрела от лука.

Намотка должна быть очень плотной, виток к витку. Витки не должны накладываться друг на друга. Только придерживаясь этих правил, можно получить качественную вторичную обмотку, в которой не будет пробоев между витками и паразитных коронных разрядов. Длина собственно обмотки получилась равной 45 см, а число витков — 810. Изготовленную обмотку нужно покрыть лаком, эпоксидной смолой или еще чем-нибудь подобным.

Существуют три варианта первичной обмотки: плоская спираль, короткая винтовая и коническая обмотка. Первая обеспечивает максимальную электрическую прочность, но в ущерб силе индуктивной связи. Вторая, напротив, создает наилучшую связь, но чем она выше — тем больше шансов, что произойдет пробой между нею и вторичной обмоткой. Коническая обмотка — промежуточный вариант, позволяющий получить наилучший баланс между индуктивной связью и электрической прочностью. Рекордные напряжения мы получить не рассчитывали, так что выбор пал на винтовую обмотку: она позволяет добиться максимального КПД и проста в изготовлении.

В качестве проводника взяли провод питания аудиоаппаратуры с сечением 6 мм², восемь витков которого намотали на отрезок ПВХ-трубы большего диаметра, чем у каркаса вторичной обмотки, и закрепили обычной изолентой. Такой вариант нельзя считать идеальным, ведь ток высокой частоты течет лишь по поверхности проводников (скин-эффект), так что правильнее делать первичную обмотку из медной трубы. Но наш способ прост в изготовлении и при не слишком больших мощностях вполне работает.

Управление

Для обратной связи мы изначально планировали использовать трансформатор тока. Но он оказался неэффективным при малых мощностях катушки. А в случае антенны сложнее обеспечить первоначальный импульс, который запустит колебания (в случае трансформатора через его кольцо можно пропустить еще один провод, на который на долю секунды замыкать обычную батарейку). В итоге у нас получилась смешанная система: один выход трансформатора был подключен к входу микросхемы, а провод второго не был ни к чему подключен и служил антенной.

Короткие замыкания, пробитие транзисторов и прочие неприятности изначально предполагались очень даже возможными, так что дополнительно был изготовлен пульт управления с амперметром переменного тока на 10 А, автоматическим предохранителем на 10 А и парой «неонок»: одна показывает, есть ли напряжение на входе в пульт, а другая — идет ли ток к катушке. Такой пульт позволяет удобно включать и выключать катушку, отслеживать основные параметры, а также дает возможность многократно снизить частоту походов к щитку для включения «выбитых» автоматов.

Последняя опциональная деталь трансформатора — дополнительная емкость в виде проводящего шара или тора на высоковольтном выходе вторичной обмотки. Во многих статьях можно прочесть, что она способна существенно удлинить разряд (кстати, это широкое поле для экспериментов). Мы сделали такую емкость на 7 пФ, собрав вместе две стальные чашки-полусферы (из магазина IKEA).

Сборка

Когда все компоненты изготовлены, конечная сборка трансформатора не составляет никакой проблемы. Единственная тонкость — заземление нижнего конца вторичной обмотки. Увы, не во всех отечественных домах есть розетки с отдельными контактами земли. А там, где есть, эти контакты не всегда реально подключены (проверить это можно с помощью мультиметра: между контактом и проводом фазы должно быть около 220 В, а между ним и нулевым проводом — почти нуль).

Если у вас такие розетки есть (у нас в редакции нашлись), то заземлять нужно именно с их помощью, используя для подключения катушки соответствующую вилку. Часто советуют заземлять на батарею центрального отопления, но это категорически не рекомендуется, поскольку в некоторых случаях может привести к тому, что батареи в доме будут бить током ни о чем не подозревающих соседей.

Но вот наступает ответственный момент включения… И сразу же появляется первая жертва молнии — транзистор схемы питания. После замены выясняется, что схема в принципе вполне работоспособна, хотя и на небольших мощностях (200−500 Вт). При выходе на проектную мощность (порядка 1−2 кВт) транзисторы взрываются с эффектной вспышкой. И хотя эти взрывы не представляют опасности, режим «секунда работы — 15 минут замены транзистора» не является удовлетворительным. Тем не менее с помощью этого трансформатора вполне можно почувствовать себя в роли Зевса-громовержца.

Благородные цели

Хотя в наше время трансформатор Теслы, по крайней мере в его исходном виде, чаще всего находит применение в разнообразных шоу, сам Никола Тесла создавал его для куда более важных целей. Трансформатор является мощным источником радиоволн с частотой от сотни килогерц до нескольких мегагерц. На основе мощных трансформаторов Теслы планировалось создание системы радиовещания, беспроводного телеграфа и беспроводной телефонии.

Но наиболее грандиозный проект Теслы, связанный с использованием его трансформатора, — создание глобальной системы беспроводного энергоснабжения. Как он считал, достаточно мощный трансформатор или система трансформаторов сможет в глобальном масштабе менять заряд Земли и верхних слоев атмосферы.

В такой ситуации установленный в любой точке планеты трансформатор, имеющий такую же резонансную частоту, как и передающий, будет источником тока, и линии электропередач станут не нужны.

Именно стремление создать систему беспроводной передачи энергии погубило знаменитый проект Wardenclyff. Инвесторы были заинтересованы в появлении только окупаемой системы связи. А передатчик энергии, которую мог бы неконтролируемо принимать любой желающий по всему миру, напротив, грозил убытками электрическим компаниям и производителям проводов. А один из основных инвесторов был акционером Ниагарской ГЭС и заводов по производству меди…

Статья «Метатели молний» опубликована в журнале «Популярная механика» (№2, Февраль 2013).