Хватит размениваться на мелочи! «Популярная механика» решила построить летательный аппарат с электрореактивным двигателем — ионным. Это дальний родственник ионных двигателей, которые ставят на некоторые современные космические аппараты.
На ионной тяге: cамодельный ионолет
Для полета ионолет использует те же принципы, что и ионные двигатели, которые устанавливают на космические аппараты. На тонком проводе возникает коронный разряд, воздух ионизуется. «Ионы движутся в сторону плоского электрода и на нем гибнут, – объясняет Олег Батищев, с.н.с. факультета аэронавтики и астронавтики МIT и разработчик геликонного плазменного двигателя. – Очень важную роль играют упругие соударения ионов и нейтралов – резонансная перезарядка и упругие соударения без передачи заряда типа газокинетических. Длина пробега на порядок меньше ионизационной, поэтому весь импульс ионов передается газу, что и создает тягу, так как ионы движутся в направлении поля, которое задано геометрией электродов».

Включаю высоковольтный генератор, и легкий серебристый аппарат под тихое шуршание коронного разряда поднимается над столом. Выглядит это совершенно фантастически, и я начинаю понимать, почему в интернете встречаются самые удивительные объяснения этому явлению. Каких только версий здесь не встретишь — от привлечения эфирной физики до попыток объединить электромагнитное и гравитационное взаимодействия. «Популярная механика» попыталась внести ясность в этот вопрос.

Конструкция ионолета

В качестве ионолета мы решили построить простейшую конструкцию. Наш аппарат — асимметричный конденсатор, верхний электрод которого представляет собой тонкий медный провод, а нижний — пластинку из фольги, которая натянута на рамку, склеенную из тонких деревянных (бальсовых) планок. Расстояние между верхним проводом и фольгой составляет порядка 30 мм. Очень важно, чтобы фольга огибала планки и не имела острых «ребер» (иначе может возникнуть электрический пробой).

К полученному конденсатору мы подключили высоковольтный генератор, изготовленный из модифицированного блока питания бытового ионизатора воздуха с напряжением 30кВ. Положительный вывод — к верхнему тонкому проводу, отрицательный — к пластинке из фольги. Поскольку аппарат лишен системы управления и стабилизации, мы привязали его тремя капроновыми нитями к столу. После включения напряжения он оторвался от поверхности и завис над столом, насколько позволяла привязь.

История вопроса

В 1920-х годах американский физик Томас Таунсенд Браун в процессе экспериментов с рентгеновскими трубками Кулиджа наткнулся на любопытный эффект. Он обнаружил, что на асимметричный конденсатор, заряженный до высокого напряжения, действует некая сила, которая даже способна поднять такой конденсатор ввоздух. На свой аппарат Браун 15 ноября 1928 года получил британский патент №300311 «Метод получения силы или движения». Эффект возникновения такой силы назвали эффектом Бифельда-Брауна, поскольку Пол Альфред Бифельд, профессор физики в Университете Денисона в Гранвилле (Огайо), помогал Брауну в его экспериментах. Сам изобретатель верил в то, что он открыл способ с помощью электричества влиять на гравитацию. Позднее Браун получил еще несколько патентов, но в них какое-либо влияние на гравитацию уже не упоминалось.

В таком виде эта история встречается в интернете почти повсеместно — в статьях многочисленных непризнанных изобретателей «антигравитационных аппаратов» и «космических кораблей будущего». Но ведь наш ионолет действительно летает!


Силовая установка

В качестве силовой установки (высоковольтного генератора) мы использовали блок питания (БП) от бытового ионизатора воздуха с напряжением около 30 кВ. Поскольку у нашего ионизатора был выведен на высоковольтный электрод только один контакт, нам пришлось разобрать корпус, извлечь сам блок питания и подсоединить оба вывода. После этого мы аккуратно поместили БП в подходящую по размерам коробку и для безопасности залили парафином. Вместо БП можно использовать блок питания старого монитора (ЭЛТ).

Почему он летает

На самом деле для объяснения принципа не требуется привлечения механизмов неизвестной современной физике «электрогравитации». Как пояснил «Популярной механике» доцент кафедры общей физики Московского физико-технического института (МФТИ) Юрий Маношкин, все дело в ионизации воздуха: «В данном случае напряженность поля у одного из электродов — верхнего тонкого провода — выше, там возникает коронный разряд, ионизующий воздух. Ионы разгоняются в электрическом поле конденсатора по направлению ко второму электроду, создавая реактивную тягу, — образуется так называемый ионный ветер». Это, разумеется, лишь качественное объяснение эффекта, поскольку, по словам Юрия Маношкина, «теория этого процесса, включающего множество аспектов — физику газового разряда, плазмы и газодинамику, — очень сложна и пока еще недостаточно разработана. Но этот вопрос изучается, поскольку в перспективе имеет множество вполне серьезных применений. Речь идет не о таких вот летающих игрушках, а, например, о возможностях с помощью ионизации влиять на характер аэродинамического обтекания летательных аппаратов».

Статья опубликована в журнале «Популярная механика» (№4, Апрель 2010).