Ракетопланы для науки и сражений: советский орбитальный истребитель

Еще до гагаринского полета, в самом начале эры освоения космоса, наши конструкторы создавали проекты удивительных летательных аппаратов, очертаниями своими напоминающих звездолеты из фантастических фильмов и романов
Олег Макаров
1
74994
  • Ракетоплан системы «кожух» Ракетоплан-истребитель выполнен по комбинированной технологии. Термозащитный кожух в форме «капсулы» заключает в себе крылатый спускаемый аппарат. Высота боевого применения — 300−1900 км. Стартовый вес — 1200 кг. Выводится на орбиту ракетой УР-500. На борту 8 снарядов «космос-космос». Перед спуском с орбиты отделяется боевая часть, после прохождения основных тепловых потоков отстреливается теплозащитный кожух, и аппарат с космонавтом на борту совершает посадку по самолетному типу.
    Ракетоплан системы «кожух» Ракетоплан-истребитель выполнен по комбинированной технологии. Термозащитный кожух в форме «капсулы» заключает в себе крылатый спускаемый аппарат. Высота боевого применения — 300−1900 км. Стартовый вес — 1200 кг. Выводится на орбиту ракетой УР-500. На борту 8 снарядов «космос-космос». Перед спуском с орбиты отделяется боевая часть, после прохождения основных тепловых потоков отстреливается теплозащитный кожух, и аппарат с космонавтом на борту совершает посадку по самолетному типу.
  • Космоплан АК-3 На эскизе представлена схема возвращения космоплана АК-3. Перед спуском на землю аппарат отстреливает блок с маршевым двигателем. Если учесть, что согласно одному из проектов в космоплане предполагалось использование ядерного двигателя (ядерный реактор нагревает водород, который выполняет роль рабочего тела и, расширяясь, создает реактивную тягу), то очевидно, что перед конструкторами встала проблема, как предотвратить падение реактора на Землю. Считалось, что проблему можно решить, уведя блок маршевых двигателей в открытый космос за счет его собственной тяги. После отделения двигателя корабль раскрывает зонт торможения, выполненный из тонких пластин тугоплавких металлов. Зонт призван отводить тепло из уплотненного воздуха, обтекающего корабль. Затем отстреливается термокожух, и крылатый спускаемый аппарат уходит на самолетную посадку.
    Космоплан АК-3 На эскизе представлена схема возвращения космоплана АК-3. Перед спуском на землю аппарат отстреливает блок с маршевым двигателем. Если учесть, что согласно одному из проектов в космоплане предполагалось использование ядерного двигателя (ядерный реактор нагревает водород, который выполняет роль рабочего тела и, расширяясь, создает реактивную тягу), то очевидно, что перед конструкторами встала проблема, как предотвратить падение реактора на Землю. Считалось, что проблему можно решить, уведя блок маршевых двигателей в открытый космос за счет его собственной тяги. После отделения двигателя корабль раскрывает зонт торможения, выполненный из тонких пластин тугоплавких металлов. Зонт призван отводить тепло из уплотненного воздуха, обтекающего корабль. Затем отстреливается термокожух, и крылатый спускаемый аппарат уходит на самолетную посадку.
  • На схеме наглядно представлен весь процесс схода космоплана с околоземной орбиты, начиная с отделения маршевого двигателя и заканчивая посадкой крылатого аппарата
    На схеме наглядно представлен весь процесс схода космоплана с околоземной орбиты, начиная с отделения маршевого двигателя и заканчивая посадкой крылатого аппарата
  • Пилотируемый орбитальный истребитель спутников состоит из возвращаемого на землю планирующего аппарата системы «конус» и сбрасываемого боевого отсека. Корпус планирующей части состоит из трех герметичных отсеков: носового, кабины, рулевого. Стартовый вес — 14 т. Выводится на орбиту ракетой УР-500. Высота боевого применения — до 3000 км. В приборном отсеке расположена аппаратура управления и источники питания.
    Пилотируемый орбитальный истребитель спутников состоит из возвращаемого на землю планирующего аппарата системы «конус» и сбрасываемого боевого отсека. Корпус планирующей части состоит из трех герметичных отсеков: носового, кабины, рулевого. Стартовый вес — 14 т. Выводится на орбиту ракетой УР-500. Высота боевого применения — до 3000 км. В приборном отсеке расположена аппаратура управления и источники питания.
  • В кабине — двухканальная оптическая система для селекции цели и ориентации, пульт управления, система питания летчика-космонавта, радиотелефонная линия «Заря», телевизионная камера. Кабина имеет два боковых иллюминатора для визуального обзора космического пространства и люк для посадки летчика-космонавта. В боевом отсеке находятся 12 снарядов «космос-космос», двигательная установка с системами жесткой и мягкой стабилизации, антенна и аппаратура РЛС. Вид посадки — парашютный.
    В кабине — двухканальная оптическая система для селекции цели и ориентации, пульт управления, система питания летчика-космонавта, радиотелефонная линия «Заря», телевизионная камера. Кабина имеет два боковых иллюминатора для визуального обзора космического пространства и люк для посадки летчика-космонавта. В боевом отсеке находятся 12 снарядов «космос-космос», двигательная установка с системами жесткой и мягкой стабилизации, антенна и аппаратура РЛС. Вид посадки — парашютный.
  • Поскольку снаряды «космос-космос» располагались в кормовой части, пилот осуществлял наведение на цель с помощью специальной оптической системы, позволявшей смотреть «за спину»
    Поскольку снаряды «космос-космос» располагались в кормовой части, пилот осуществлял наведение на цель с помощью специальной оптической системы, позволявшей смотреть «за спину»
  • Ракетопланы крылатой схемы В ОКБ-52 было разработано множество вариантов крылатых аппаратов, однако из-за сложностей с созданием теплозащиты это направление было наименее проработанным. На эскизах представлен ракетоплан с отделяемой боевой частью, а также схемы суборбитальных крылатых аппаратов для полетов дальностью 8000 км и 40 000 км. Согласно эскизу, такие суборбитальные ракетопланы выводятся на траекторию полета с помощью первой ступени, которая стартует с аэродрома по самолетному типу, а затем самостоятельно возвращается к месту базирования.
    Ракетопланы крылатой схемы В ОКБ-52 было разработано множество вариантов крылатых аппаратов, однако из-за сложностей с созданием теплозащиты это направление было наименее проработанным. На эскизах представлен ракетоплан с отделяемой боевой частью, а также схемы суборбитальных крылатых аппаратов для полетов дальностью 8000 км и 40 000 км. Согласно эскизу, такие суборбитальные ракетопланы выводятся на траекторию полета с помощью первой ступени, которая стартует с аэродрома по самолетному типу, а затем самостоятельно возвращается к месту базирования.
  • Суборбитальные ракетопланы Проектировались в частности для сверхбыстрой перевозки персонала и грузов практически в любую точку планеты. Другое их назначение — разведчики и бомбардировщики
    Суборбитальные ракетопланы Проектировались в частности для сверхбыстрой перевозки персонала и грузов практически в любую точку планеты. Другое их назначение — разведчики и бомбардировщики
  • Траектории маневра суборбитальных ракетопланов
    Траектории маневра суборбитальных ракетопланов

Советским ракетопланам и космопланам предстояло не только осваивать глубины космоса и летать к другим планетам, но и сражаться с вероятным противником в орбитальном и суборбитальном пространстве. Эти проекты во многом опередили свое время и так и не были реализованы, но документы из рассекреченных архивов сегодня позволяют нам по достоинству оценить смелость и оригинальность отечественной конструкторской мысли. Читать далее

Не падать, а лететь

На рубеже 1950−1960-х годов, когда космонавтика делала свои первые шаги, в деле освоения околоземного пространства было больше вопросов, чем ответов. Одна из серьезнейших проблем, которую предстояло решить конструкторам, заключалась в безопасном возвращении космонавтов с орбиты. Спуск по баллистической траектории давал перегрузку около 10 g, что создавало колоссальные нагрузки на организм человека. Как теперь известно, заключительную часть полета Юрий Гагарин выполнил вне спускаемого аппарата. Первому космонавту было предписано на определенной высоте покинуть шар «Востока"и приземлиться на парашюте — из опасения, что он может не вынести перегрузок баллистического спуска.

Как показала впоследствии практика, тренированный организм способен выдержать эти перегрузки. Но не будем забывать, что космонавтика в разгаре «холодной войны» развивалась прежде всего с прицелом на боевое применение. Вероятный сценарий глобального конфликта мог потребовать одновременно большого количества пилотов военных космических аппаратов, и на тщательный отбор и подготовку космонавтов просто не хватило бы времени. Необходимо было разработать более щадящий способ схода с орбиты и приземления.

Один из таких способов — создание спускаемого аппарата с планирующей способностью, или с аэродинамическим качеством. Идея планирующего космического корабля, или ракетоплана, получила достаточно широкое распространение и лежала в основе проектов, разрабатывавшихся как в СССР, так и в США (например, проект Dyna Soar). Преимущество аппарата с аэродинамическим качеством заключается не только в снижении перегрузок, но и в возможности маневрирования при спуске, что обеспечивает более точное приземление. Развитие этой темы также открывало возможность создания маневрирующих боеголовок и орбитальных/суборбитальных бомбардировщиков, на гиперзвуковых скоростях и больших высотах преодолевающих ПВО противника.

Космическая бомбардировка

Большая работа по темам «Ракетопланы» и «Космопланы» была проведена в начале 1960-х в Объединенном конструкторском бюро 52 (ныне ФГУП «НПО машиностроения»), основанном и возглавляемом в то время выдающимся советским конструктором В.Н. Челомеем. В описании эскизного проекта, хранящемся в архиве ОКБ-52, дается следующее определение: «Под ракетопланом понимается космический летательный аппарат многоразового применения, способный совершать полеты в космическом пространстве, могущий достигать орбитальных I и II космических скоростей полета, использующий для управления траекторией полета как газодинамические, так и аэродинамические силы и способный совершить значительные маневры в космосе и атмосфере и производить посадку в заданной точке земной поверхности».

Проектируемые ракетопланы подразделялись на две функциональные группы: военные и научно-исследовательские. Группа военных ракетопланов подразделялась на аппараты высокоорбитальные и низкоорбитальные.

Высокоорбитальные ракетопланы должны были действовать на орбитах с высотами 150−5000 км и использоваться для перехвата, опознавания и уничтожения космических целей (спутников и военных станций), поражения стратегически важных наземных и морских целей, ведения оперативной и стратегической разведки из космоса и организации системы раннего оповещения ПРО страны о старте баллистических ракет противника.

Низкоорбитальные ракетопланы предполагалось задействовать на высотах 50−80 км, где при гиперзвуковых скоростях полета еще возможно эффективное использование аэродинамических сил для управления траекторией полета. По замыслу конструкторов высокая скорость и возможность широко маневрировать орбитами давали низкоорбитальному ракетоплану преимущество малой уязвимости со стороны ПРО противника. Подобные аппараты предназначались для использования в качестве бомбардировщиков и разведчиков, а также как специальное транспортное средство.

Военные ракетопланы проектировались как в пилотируемом, так и беспилотном вариантах. Научно-исследовательские ракетопланы (космопланы) рассматривались как часть пилотируемых комплексов для облета Луны и Марса или орбитальных астрофизических исследований. В виде собственно космоплана был выполнен лишь спускаемый аппарат.

Капсулы, конусы, крылья

Конструктивно ракетопланы подразделялись на три основные группы в соответствии с их аэродинамическим качеством.

Аппарат с низким аэродинамическим качеством (0,15−0,30), так называемая капсула, имел форму конуса с сильно затупленным носом. Снижая перегрузки, «капсула» не могла маневрировать в атмосфере, что исключало выбор места посадки и не гарантировало безопасного приземления. Поэтому развитием ракетопланов этого типа стала комбинированная схема (Р-2). Форму с низким качеством образовывал термозащитный кожух, в который помещался крылатый аппарат со сложенными крыльями. После прохождения основных тепловых потоков кожух отстреливался, а крылатый аппарат с летчиком-космонавтом на борту осуществлял маневр и посадку по самолетному типу.

Ракетоплан со средним аэродинамическим качеством (0,8−1,5) был спроектирован в форме слабо затупленного конуса с хвостовыми стреловидными рулями. Рули служат органами балансировки и управления и увеличивают устойчивость аппарата. Посадка на ракетоплане системы «Конус», главное предназначение которого — истребитель спутников, проектировалась в нескольких вариантах: парашютная посадка отделяемой кабины и катапультирование пилота.

При проектировании ракетоплана с высоким аэродинамическим качеством (1,8−2,5) конструкторы исходили из того, что данное значение при гиперзвуковых скоростях можно получить только на аппарате крылатой схемы. Главной проблемой при его проектировании была теплозащита, так как тонкие профили крыльев и заостренный нос могли прогореть в плотных слоях атмосферы. По крылатой модели также были сделаны эскизы суборбитальных систем. Ракетопланы с высоким качеством задумывались как космические бомбардировщики, истребители спутников, разведчики и возвращаемые космические станции. Посадку крылатый ракетоплан должен был осуществлять по самолетному типу.

На высшем уровне

Один из ведущих сотрудников ОКБ-52 В.А. Поляченко вспоминает в своей книге, что впервые термин «ракетоплан» появился в перечне проектов в июле 1959 года. Речь шла об аппарате на ЖРД, выводимом на орбиту четырехступенчатой системой. Позже в том же году в качестве полезной нагрузки для разрабатываемых баллистических ракет стартовыми массами от 150 до 1500 т рассматривались крылатый ракетоплан, крылатая боеголовка с самонаведением на конечном этапе полета и космоплан для полета к планетам.

10 мая 1960 года представители ОКБ-52 во главе с В.Н. Челомеем были вызваны в Кремль для доклада. На докладе присутствовали Н.С. Хрущев, а также курировавший в то время оборонную промышленность Л.И. Брежнев, министр обороны СССР Р.Я. Малиновский, председатель военно-промышленной комиссии Д.Ф. Устинов. Челомей изложил предложения ОКБ-52 по созданию межпланетных и околоземных космических аппаратов и разгонных ракет для них. Предложения включали в себя разработку космоплана для полета к Марсу и Венере, который при возвращении мог бы совершить посадку в заданной точке Земли, а также создание пилотируемых и беспилотных ракетопланов для околоземных полетов. Через 11 дней доклад был представлен на заседании Научно-технического совета Госкомитета Совмина СССР по авиационной технике, где присутствовали ведущие советские авиаконструкторы — Туполев, Мясищев, Микоян, Люлька и другие. А уже 23 июня вышло постановление ЦК КПСС и Совета министров СССР с поручением ОКБ-52 разрабатывать космические аппараты на основе изложенных предложений.

Судьба мечты

Вместе с тем необходимость спуска с орбиты на крыле стала предметом серьезных дискуссий в инженерно-конструкторской среде. В то время как В.Н. Челомей считал, что за крылатыми спускаемыми аппаратами будущее, представители других КБ и институтов проявляли в данном вопросе большую осторожность. В.А. Поляченко вспоминает о дискуссии, состоявшейся между Челомеем и Королевым на совещании у Устинова. Королев признавал, что спускаемый аппарат, построенный по крылатой схеме, может быть незаменимым, например, при посадке на Марс. Но если речь идет об околоземных полетах, то «дорого таскать крылья в космос».

Но 20 лет спустя, с первым полетом шаттла «Колумбия», было доказано, что спуск с орбиты с использованием аэродинамических сил имеет право на существование. Вернулись к идее крылатого спуска и в СССР, создав в итоге систему «Энергия-Буран». Но в начале 1960-х разработки ОКБ-52 значительно опережали свое время и не могли быть осуществлены на основе тогдашних технологий. 21 марта 1963 года ОКБ-52 произвело испытание изделия М-12, представлявшего собой конус с хвостовыми рулями. В ходе испытаний аппарат разрушился. Одна из вероятных причин неудачи — полное сгорание рулей в плотных слоях атмосферы.

К середине 1960-х тема космопланов и ракетопланов была фактически закрыта. Однако нет оснований считать ее «тупиковой ветвью». Проведенные расчеты в области аэро- и термодинамики стали для ОКБ-52 закономерным этапом на пути к созданию аппаратов, которые реально работали на орбите, например орбитальной пилотируемой станции военного назначения «Алмаз», прародителя советских орбитальных станций. Работы над ракетой-носителем для ракетопланов привели к созданию мощного УР-500, более известного как «Протон» и до сих пор верно служащего российской и мировой космонавтике. К теме крылатого спуска ОКБ-52 вернулось в 1970-х, приступив к проектированию ЛКС (легкого космического самолета), фактически двухместного «шаттла». Но советское руководство сделало выбор в пользу тяжелого и вместительного «Бурана».

Благодарим за помощь представителей ФГУП «НПО Машиностроения» А.В. Благова, гл. специалиста проектного комплекса, и В.А. Поляченко, помощника ученого секретаря НТС

Статья опубликована в журнале «Популярная механика» (№71, сентябрь 2008).

Комментарии

1 комментарий