Троичный компьютер: Да, нет, может быть: Логика

Информация, которой оперирует компьютер, так или иначе раскладывается на единицы и нули — графика, музыка, тексты, алгоритмы программ. Все просто и понятно: «включено» — «выключено», «есть сигнал» — «нет сигнала». Либо «истина», либо «ложь» — двоичная логика. А между тем еще в 1961-м, в год первого полета человека в космос, в Советском Союзе наладили производство необычных вычислительных машин, оперировавших не двоичной, а троичной логикой
Александр Петров
38
69894
  • «Лишняя» переменная Недвухзначность логики восходит к основоположнику первой законченной логической теории — Аристотелю, который между утверждением и антиутверждением помещал третье «привходящее» — «может да, а может нет». В последующем развитии логика была упрощена за счет отказа от этого третьего состояния и в таком виде оказалась необычайно живучей, несмотря на свое несоответствие нечеткой, не всегда раскладывающейся на «да» и «нет» действительности. В разные века «расширить» логику пытались Оккам, Лейбниц, Гегель, Кэрролл и некоторые другие мыслители, в конечном же виде трехзначную логику разработал в начале XX века польский ученый Ян Лукасевич.
    «Лишняя» переменная Недвухзначность логики восходит к основоположнику первой законченной логической теории — Аристотелю, который между утверждением и антиутверждением помещал третье «привходящее» — «может да, а может нет». В последующем развитии логика была упрощена за счет отказа от этого третьего состояния и в таком виде оказалась необычайно живучей, несмотря на свое несоответствие нечеткой, не всегда раскладывающейся на «да» и «нет» действительности. В разные века «расширить» логику пытались Оккам, Лейбниц, Гегель, Кэрролл и некоторые другие мыслители, в конечном же виде трехзначную логику разработал в начале XX века польский ученый Ян Лукасевич.
  • «Сетунь» Несмотря на то что впоследствии команда Брусенцова разработала вторую модель «Сетунь-70», а в США в 1970-х годах шла работа над аналогичной ЭВМ Ternac, «Сетунь» осталась единственным в истории троичным компьютером, производившимся серийно.
    «Сетунь» Несмотря на то что впоследствии команда Брусенцова разработала вторую модель «Сетунь-70», а в США в 1970-х годах шла работа над аналогичной ЭВМ Ternac, «Сетунь» осталась единственным в истории троичным компьютером, производившимся серийно.

В принципе, у троичной системы счисления было не меньше шансов, чем у двоичной. Кто знает, по какому пути развития пошел бы технический прогресс, если бы «трайты» одержали победу над «байтами». Как выглядели бы современные смартфоны или GPS-навигаторы, как отразилось бы значение «может быть» на их быстродействии? Сложно сказать. Мы проанализируем этот вопрос, а вам предоставим возможность сделать выводы самостоятельно.

Машина Фоулера

Справедливости ради сразу следует заметить: первую вычислительную машину с троичной системой счисления задолго до советских конструкторов построил английский изобретатель-самоучка Томас Фоулер в далеком 1840 году. Его машина была механической и полностью деревянной.

Томас Фоулер работал банковским служащим и по роду деятельности был вынужден производить сложные вычисления. Чтобы облегчить и ускорить свою работу, он сделал таблицы для счета степенями двойки и тройки, а позже опубликовал эти таблицы в виде брошюры. Читать далее

Затем он пошел дальше, решив полностью автоматизировать расчеты по таблицам, и построил счетную машину. Английская патентная система того времени была несовершенна, предыдущее изобретение Фоулера (термосифон для систем парового отопления) было скопировано с минимальными изменениями и запатентовано множеством недобросовестных «изобретателей», поэтому, опасаясь, что его идею снова могут украсть, он решил изготовить машину в единственном экземпляре и — из дерева. Так как дерево — материал ненадежный, для обеспечения достаточной точности вычислений Фоулеру пришлось сделать машину весьма громоздкой, около 2 м в длину. Впрочем, как писал сам изобретатель в сопроводительной записке, отправляя машину в Лондонский королевский колледж, «если бы ее можно было изготовить из металла, она бы оказалась не больше пишущей машинки».

Машина Фоулера была проста, эффективна и использовала новаторский подход: вместо десятичной системы счисления оперировала «триадами», то есть степенями тройки. К сожалению, замечательное изобретение так и осталось незамеченным, оригинал машины не сохранился до наших времен, и о ее устройстве известно только из сочинения Фоулера-младшего, написавшего биографию отца.

Первые советские опыты

О практическом использовании троичной системы счисления забыли более чем на сто лет. Следующими, кто вернулся к этой идее, были инженеры с кафедры вычислительной математики механико-математического факультета МГУ.

Все началось в 1954 году: кафедре должны были передать электронно-вычислительную машину М-2, но не сложилось. А машину-то ждали, готовились ее устанавливать и налаживать, с нею связывались определенные ожидания и планы. И кто-то предложил: давайте построим свою.

Взяли — и построили, благо в то время в МГУ существовали некоторые теоретические наработки. Руководителем группы, осуществлявшей проектирование и изготовление машины, был назначен Николай Петрович Брусенцов. Задача была такая: сделать машину предельно простой и недорогой (потому что никакого специального финансирования у проекта не было). Поначалу собирались делать двоичную ЭВМ, но позже — как раз из соображений экономичности и простоты архитектуры — пришли к решению, что она будет троичной, использующей «естественный» троичный симметричный код, простейший из симметричных кодов.

К концу 1958 года был закончен первый экземпляр машины, которой дали имя «Сетунь» — по названию московской речки. «Сетунь» была относительно невелика для вычислительных машин того поколения и занимала площадь 25−30 м2. Благодаря своей изящной архитектуре она была способна выполнять 2000−4500 операций в секунду, обладала оперативной памятью в 162 девятитритных ячейки и запоминающим устройством на магнитном барабане емкостью 36−72 страницы по 54 ячейки каждая. Машинных команд было всего 27 (причем три так и остались невостребованными), благодаря чему программный код получался весьма экономным; программирование непосредственно в машинных кодах было настолько простым, что для «Сетуни» даже не разрабатывали свой ассемблер. Данные вводили в машину с перфоленты, результаты выводились на телетайп (причем, что любопытно, отрицательные цифры печатались как обычные, но перевернутые кверху ногами). При эксплуатации машина показывала 95−98% полезного времени (расходуемого на решение задач, а не на поиск неисправностей и устранение неполадок), а в те времена очень хорошим результатом считалось, если машина могла дать хотя бы 60%.

На межведомственных испытаниях 1960 года машину признали пригодной для массового использования в КБ, лабораториях и вузах, последовало распоряжение о серийном выпуске «Сетуни» на Казанском заводе математических машин. С 1961 по 1965 год было построено 50 экземпляров, которые работали по всей стране. Затем производство свернули. Почему перестали выпускать «Сетунь», если она успешно использовалась всюду от Калининграда до Якутска? Одна из возможных причин в том, что компьютер оказался слишком дешевым в производстве и потому невыгодным для завода. Другая причина- косность бюрократических структур, противодействие ощущалось на каждом из этапов.

Впоследствии Николай Брусенцов и Евгений Жоголев разработали более современную версию машины, использовавшую те же принципы троичности, — «Сетунь-70″, но она так и не пошла в серийное производство, единственный опытный образец работал в МГУ до 1987 года.

Трехзначная логика

Двухзначная математическая логика, которая повсеместно царит в мире компьютерной и прочей «интеллектуальной» техники, по мнению создателя троичного компьютера Николая Брусенцова, не соответствует здравому смыслу: «закон исключенного третьего» отрезает иные заключения, кроме «истины» и «не-истины», а между тем процесс познания реальности человеком отнюдь не сводится к дихотомии «да/нет». Поэтому, утверждает Брусенцов, чтобы стать интеллектуальным, компьютеру следует быть троичным.

Трехзначная логика отличается от двухзначной тем, что кроме значений «истина» и «ложь» существует третье, которое понимается как «не определено», «нейтрально» или «может быть». При этом сохраняется совместимость с двухзначной логикой — логические операции с «известными» значениями дают те же результаты.

Логике, оперирующей тремя значениями, естественным образом соответствует троичная система счисления — троичная симметричная, если говорить точнее, простейшая из симметричных систем. К этой системе впервые обратился Фибоначчи для решения своей «задачи о гирях».

В троичной симметричной системе используются цифры: -1, 0 и 1 (или, как их еще обозначают, -, 0 и +). Преимущества ее как симметричной системы состоят в том, что, во-первых, не нужно как-то особо отмечать знак числа — число отрицательно, если его ведущий разряд отрицателен, и наоборот, а инвертирование (смена знака) числа производится путем инвертирования всех его разрядов; во-вторых, округление здесь не требует каких-то специальных правил и производится простым обнулением младших разрядов.

Кроме того, из всех позиционных систем счисления троичная наиболее экономична — в ней можно записать большее количество чисел, нежели в любой другой системе, при равном количестве используемых знаков: так, например, в десятичной системе, чтобы представить числа от 0 до 999, потребуется 30 знаков (три разряда, десять возможных значений для каждого), в двоичной системе теми же тридцатью знаками можно закодировать числа в диапазоне от 0 до 32767, а в троичной — от 0 до 59048. Самой экономичной была бы система счисления с основанием, равным числу Эйлера (e = 2,718…), и 3 — наиболее близкое к нему целое.

Если в привычных нам двоичных компьютерах информация измеряется в битах и байтах, то компьютеры на троичной системе счисления оперируют новыми единицами: тритами и трайтами. Трит — это один троичный разряд; подобно тому, как бит может принимать значения 0 и 1 («ложь» и"истина»), трит может быть (+), (0) или (-) (то есть «истина», «неизвестно» или «ложь»).

Один трайт традиционно (так было на «Сетуни») равен шести тритам и может принимать 729 различных значений (байт — только 256). Впрочем, возможно, в будущем трайты станут 9- или 27-разрядными, что естественнее, так как это степени тройки.

Настоящее и будущее троичных компьютеров

После «Сетуни» было несколько экспериментальных проектов, осуществлявшихся энтузиастами (таких, например, как американские Ternac и TCA2), однако это были либо весьма несовершенные машины, далекие от двоичных аналогов, либо и вовсе программные эмуляции на двоичном «железе».

Основная причина состоит в том, что использование в компьютерах троичных элементов пока не дает никаких существенных преимуществ перед двоичными: выпуск последних налажен массово, они проще и дешевле по себестоимости. Даже будь сейчас построен троичный компьютер, недорогой и по своим характеристикам сравнимый с двоичными, он должен быть полностью совместим с ними. Уже разработчики «Сетуни-70» столкнулись с необходимостью обеспечить совместимость: чтобы обмениваться информацией с другими университетскими машинами, пришлось добавить возможность читать с перфолент двоичные данные и при выводе также конвертировать данные в двоичный формат.

Однако нельзя сказать, что троичный принцип в компьютеростроении — это безнадежный анахронизм. В последнее десятилетие возникла необходимость в поиске новых компьютерных технологий, и некоторые из этих технологий лежат в области троичности.

Одно из таких исследовательских направлений — поиск альтернативных способов увеличения производительности процессоров. Каждые 24 месяца число транзисторов в кристалле процессора увеличивается примерно вдвое — эта тенденция известна как «закон Мура», и вечно продолжаться она не может: масштабы элементов и связей можно измерить в нанометрах, и очень скоро разработчики столкнутся с целым рядом технических сложностей. Кроме того, есть и экономические соображения — чем меньше, тем дороже разработки и производство. И с какого-то момента окажется дешевле поискать альтернативные способы делать процессоры мощнее, нежели продолжать гонку за нанометрами, — обратиться к технологиям, от которых раньше отказывались как от нерентабельных. Переход от однородных кремниевых структур к гетеропереходным проводникам, состоящим из слоев различных сред и способным генерировать несколько уровней сигнала вместо привычных «есть» и «нет», — это возможность повысить интенсивность обработки информации без увеличения количества элементов (и дальнейшего уменьшения их размеров). При этом от двухзначной логики придется перейти к многозначным — трехзначной, четырехзначной и т. д.

Другое направление, также нацеленное на увеличение производительности, — разработки в области асинхронных процессоров. Известно, что обеспечение синхронности процессов в современных компьютерах изрядно усложняет архитектуру и расходует процессорные ресурсы — до половины всех транзисторов в чипе работает на обеспечение этой самой синхронности. Компания Theseus Logic предлагает использовать «расширенную двоичную» (фактически — троичную) логику, где помимо обычных значений «истина» и «ложь» есть отдельный сигнал «NULL», который используется для самосинхронизации процессов. В этом же направлении работают еще несколько исследовательских групп.

Есть и более фантастические направления, где оправдано использование трехзначной логики: оптические и квантовые компьютеры.

Байт — не всегда восемь битов

А знаете ли вы, что «в байте восемь битов" — это отнюдь не аксиома? На многих компьютерах, производившихся в США в 1950—1960-х годах, использовались шестибитовые байты; встречались также компьютеры, где байт состоял из четырех битов. Впоследствии из соображений совместимости де-факто был принят восьмибитовый стандарт, который существует до сих пор. Впрочем, на некоторых суперкомпьютерах байт состоит из 32 битов.

Статья опубликована в журнале «Популярная механика» (№107, сентябрь 2011).

Лучший комментарий

38 комментариев
  • avatar
    new_gorlum@mail.ru
    +2
    Троичная логика не даёт никаких особых преимуществ над двоичной при оперировании. Читать далее
    А, поскольку двоичная более проста, технически надёжна и распространена - зачем усложнять себе жизнь? Это как с системами счисления по разным основаниям - вы можете считать хоть в 135-ричной системе счисления - применений, где это будет удобнее привычной и единой десятичной - по пальцам трёхпалой руки можно пересчитать, во всех остальных случаях - будет просто неудобно. Троичная - всего лишь одно из подмножеств многозначных логик. Действительно полезными и перспективными являются системы нечёткой логики. Если бы были найдены не методы эмулирования оной на дискретной основе, но технический базис для её полноценной реализации в виде универсальных и модульных блоков - это было бы полезно. Но тут пока очень сыро. Это область АВМ, фактически, и универсальных машин тут как бы не видно. Хотя попыток было много. Но они остались... экзотикой. Очень частными и не гибкими решениями.