Создано людьми: рукотворные химические элементы

Из 26 известных в настоящее время трансурановых элементов 24 не встречаются на нашей планете. Они были созданы человеком. Как же синтезируют тяжелые и сверхтяжелые элементы?
Создано людьми: рукотворные химические элементы
Getty Images

Первый список из тридцати трех предполагаемых элементов, «Таблицу субстанций, принадлежащих всем царствам природы, которые могут считаться простейшими составными частями тел», опубликовал Антуан Лоран Лавуазье в 1789 году. Вместе с кислородом, азотом, водородом, семнадцатью металлами и еще несколькими настоящими элементами в нем фигурировали свет, теплород и некоторые окислы. А когда 80 лет спустя Менделеев придумал Периодическую систему, химики знали 62 элемента. К началу XX века считалось, что в природе существуют 92 элемента — от водорода до урана, хотя некоторые из них еще не были открыты.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Тем не менее уже в конце XIX века ученые допускали существование элементов, следующих в таблице Менделеева за ураном (трансуранов), но обнаружить их никак не удавалось. Сейчас известно, что в земной коре содержатся следовые количества 93-го и 94-го элементов — нептуния и плутония. Но исторически эти элементы сначала получили искусственно и лишь потом обнаружили в составе минералов.

Химия
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Из 94 первых элементов у 83 имеются либо стабильные, либо долгоживущие изотопы, период полураспада которых сравним с возрастом Солнечной системы (они попали на нашу планету из протопланетного облака). Жизнь остальных 11 природных элементов много короче, и потому они возникают в земной коре лишь в результате радиоактивных распадов на краткое время. А как же все остальные элементы, от 95-го до 118-го? На нашей планете их нет. Все они были получены искусственным путем.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Первый искусственный

Создание искусственных элементов имеет долгую историю. Принципиальная возможность этого стала понятна в 1932 году, когда Вернер Гейзенберг и Дмитрий Иваненко пришли к выводу, что атомные ядра состоят из протонов и нейтронов. Два года спустя группа Энрико Ферми попыталась получить трансураны, облучая уран медленными нейтронами. Предполагалось, что ядро урана захватит один или два нейтрона, после чего претерпит бета-распад с рождением 93-го или 94-го элементов. Они даже поспешили объявить об открытии трансуранов, которые в 1938 году в своей Нобелевской речи Ферми назвал аусонием и гесперием. Однако немецкие радиохимики Отто Ган и Фриц Штрассман вместе с австрийским физиком Лизой Мейтнер вскоре показали, что Ферми ошибся: эти нуклиды были изотопами уже известных элементов, возникшими в результате расщепления ядер урана на пары осколков приблизительно одинаковой массы. Именно это открытие, совершенное в декабре 1938 года, сделало возможным создание ядерного реактора и атомной бомбы.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Элементы

Первым же синтезированным элементом стал вовсе не трансуран, а предсказанный еще Менделеевым экамарганец. Его искали в различных рудах, но безуспешно. А в 1937 году экамарганец, позднее названный технецием (от греческого — искусственный) был получен при обстреле молибденовой мишени ядрами дейтерия, разогнанными в циклотроне Национальной лаборатории имени Лоуренса в Беркли.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Легкие снаряды

Элементы с 93-го до 101-го были получены при взаимодействии ядер урана либо следующих за ним трансуранов с нейтронами, дейтронами (ядрами дейтерия) или альфа-частицами (ядрами гелия). Первого успеха здесь добились американцы Эдвин Макмиллан и Филип Эйбелсон, которые в 1940 году синтезировали нептуний-239, отработав идею Ферми: захват ураном-238 медленных нейтронов и последующий бета-распад урана-239.

Следующий, 94-й элемент — плутоний — впервые обнаружили при изучении бета-распада нептуния-238, полученного дейтронной бомбардировкой урана на циклотроне Калифорнийского университета в Беркли в начале 1941 года. А вскоре стало понятно, что плутоний-239 под действием медленных нейтронов делится не хуже урана-235 и может служить начинкой атомной бомбы. Поэтому все сведения о получении и свойствах этого элемента засекретили, и статья Макмиллана, Гленна Сиборга (за свои открытия они разделили Нобелевскую премию 1951 года) и их коллег с сообщением о втором трансуране появилась в печати лишь в 1946 году.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Химия

Американские власти почти на шесть лет задержали и публикацию об открытии 95-го элемента, америция, который в конце 1944 года был выделен группой Сиборга из продуктов нейтронной бомбардировки плутония в ядерном реакторе. Несколькими месяцами ранее физики из этой же команды получили первый изотоп 96-го элемента с атомным весом 242, синтезированный при бомбардировке урана-239 ускоренными альфа-частицами. Его назвали кюрием в знак признания научных заслуг Пьера и Марии Кюри, открыв тем самым традицию наименования трансуранов в честь классиков физики и химии.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

60-дюймовый циклотрон Калифорнийского университета стал местом сотворения еще трех элементов, 97-го, 98-го и 101-го. Первые два назвали по месту рождения — берклием и калифорнием. Берклий был синтезирован в декабре 1949 года при обстреле альфа-частицами мишени из америция, калифорний — двумя месяцами позже при такой же бомбардировке кюрия. 99-й и 100-й элементы, эйнштейний и фермий, были обнаружены при радиохимическом анализе проб, собранных в районе атолла Эниветок, где 1 ноября 1952 года американцы взорвали десятимегатонный термоядерный заряд «Майк», оболочка которого была изготовлена из урана-238. Во время взрыва ядра урана поглощали до пятнадцати нейтронов, после чего претерпевали цепочки бета-распадов, которые и вели к образованию этих элементов. 101-й элемент, менделевий, был получен в начале 1955 года. Сиборг, Альберт Гиорсо, Бернард Харви, Грегори Чоппин и Стэнли Томсон подвергли альфа-частичной бомбардировке около миллиарда (это очень мало, но больше просто не было) атомов эйнштейния, электролитически нанесенных на золотую фольгу. Несмотря на чрезвычайно высокую плотность пучка (60 трлн альфа-частиц в секунду), было получено лишь 17 атомов менделевия, но при этом удалось установить их радиационные и химические свойства.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Тяжелые ионы

Менделевий стал последним трансураном, полученным с помощью нейтронов, дейтронов или альфа-частиц. Для получения следующих элементов требовались мишени из элемента номер 100 — фермия, которые тогда было невозможно изготовить (даже сейчас в ядерных реакторах фермий получают в нанограммовых количествах).

Химия
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Ученые пошли другим путем: использовали для бомбардировки мишеней ионизированные атомы, чьи ядра содержат более двух протонов (их называют тяжелыми ионами). Для разгона ионных пучков потребовались специализированные ускорители. Первую такую машину HILAC (Heavy Ion Linear Accelerator) запустили в Беркли в 1957 году, вторую, циклотрон У-300 — в Лаборатории ядерных реакций Объединенного института ядерных исследований в Дубне в 1960-м. Позднее в Дубне заработали и более мощные установки У-400 и У-400М. Еще один ускоритель UNILAC (Universal Linear Accelerator) с конца 1975 года действует в немецком Центре по исследованию тяжелых ионов имени Гельмгольца, в Виксхаузене, одном из районов Дармштадта.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

В ходе бомбардировок тяжелыми ионами мишеней из свинца, висмута, урана или трансуранов возникают сильно возбужденные (горячие) ядра, которые либо разваливаются, либо сбрасывают избыточную энергию посредством испускания (испарения) нейтронов. Иногда эти ядра испускают один-два нейтрона, после чего претерпевают и другие превращения — например, альфа-распад. Такой тип синтеза называется холодным. В Дармштадте с его помощью получили элементы с номерами от 107 (борий) до 112 (коперниций). Этим же способом в 2004 году японские физики создали один атом 113-го элемента (годом ранее он был получен в Дубне). При горячем синтезе новорожденные ядра теряют больше нейтронов — от трех до пяти. Этим способом в Беркли и в Дубне синтезировали элементы со 102-го (нобелий) до 106-го (сиборгий, в честь Гленна Сиборга, под руководством которого было создано девять новых элементов). Позднее в Дубне таким путем изготовили шесть самых массивных сверхтяжеловесов — с 113-го по 118-й. Международный союз теоретической и прикладной химии (IUPAC, International Union of Pure and Applied Chemistry) пока утвердил лишь имена 114-го (флеровий) и 116-го (ливерморий) элементов.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Таблица элементов
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Всего три атома

118-й элемент с временным названием унуноктий и символом Uuo (по правилам IUPAC, временные имена элементов образуются от латинских и греческих корней названий цифр их атомного номера, un-un-oct (ium) — 118) был создан совместными усилиями двух научных групп: дубнинской под руководством Юрия Оганесяна и Ливерморской национальной лаборатории под руководством Кентона Муди, ученика Сиборга. Унуноктий в таблице Менделеева расположен под радоном и поэтому может быть благородным газом. Однако его химические свойства пока выяснить не удалось, поскольку физики создали лишь три атома этого элемента с массовым числом 294 (118 протонов, 176 нейтронов) и периодом полураспада около миллисекунды: два в 2002 году и один в 2005-м. Их получили бомбардировкой мишени из калифорния-249 (98 протонов, 151 нейтрон) ионами тяжелого изотопа кальция с атомной массой 48 (20 протонов и 28 нейтронов), разогнанными на ускорителе У-400. Общее число кальциевых «пуль» составило 4,1х1019, так что производительность дубнинского «унуноктиевого генератора» крайне мала. Однако, по словам Кентона Муди, У-400 — единственная в мире машина, на которой можно было синтезировать 118-й элемент.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

«Каждая серия опытов по синтезу трансуранов добавляет новую информацию о структуре ядерной материи, которую используют для моделирования свойств сверхтяжелых ядер. В частности, работы по синтезу 118-го элемента позволили отбросить несколько прежних моделей, — вспоминает Кентон Муди. — Мы сделали мишень из калифорния, поскольку более тяжелые элементы в нужных количествах были недоступны. Кальций-48 содержит восемь добавочных нейтронов по сравнению со своим основным изотопом кальцием-40. При слиянии его ядра с ядром калифорния образовывались ядра со 179 нейтронами. Они находились в сильно возбужденных и поэтому особо нестабильных состояниях, из которых быстро выходили, сбрасывая нейтроны. В результате мы получили изотоп 118-го элемента со 176 нейтронами. И это были настоящие нейтральные атомы с полным набором электронов! Живи они чуть подольше, можно было бы судить и об их химических свойствах».

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Химия
Дубнинский метод

Мафусаил номер 117

Элемент 117, он же унунсептий, был получен позже — в марте 2010 года. Этот элемент был рожден на той же машине У-400, где, как и раньше, обстреливали ионами кальция-48 мишень из берклия-249, синтезированного в Окриджской национальной лаборатории. При столкновении ядер берклия и кальция возникали сильно возбужденные ядра унунсептия-297 (117 протонов и 180 нейтронов). Экспериментаторам удалось получить шесть ядер, пять из которых испарили по четыре нейтрона и превратились в унунсептий-293, а оставшееся испустило три нейтрона и дало начало унунсептию-294.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Химия

В сравнении с унуноктием унунсептий оказался настоящим Мафусаилом. Период полураспада более легкого изотопа — 14 миллисекунд, а более тяжелого — целых 78 миллисекунд! В 2012 году дубнинские физики получили еще пять атомов унунсептия-293, позже — несколько атомов обоих изотопов. Весной 2014 года ученые из Дармштадта сообщили о синтезе четырех ядер 117-го элемента, два из которых имели атомную массу 294. Период полураспада этого «тяжелого» унунсептия, измеренный немецкими учеными, составил около 51 миллисекунды (это хорошо согласуется с оценками ученых из Дубны).